ADVANCED DYNAMICS — PHY-4241/5227 HOMEWORK 7

(February 16, 2004) Due Monday, February 23, 2004 (late afternoon)

PROBLEM 17

Let (in unspecified units)

(a)
$$ct = 5$$
, $x^{1} = 1$, $x^{2} = 2$, $x^{3} = 3$
(b) $ct = 5$, $x_{1} = 1$, $x^{2} = 2$, $x^{3} = 3$
(c) $ct = 5$, $x^{1} = 1$, $x^{2} = 2$, $x^{3} = -3$
(d) $ct = 5$, $x^{1} = 0$, $x^{2} = 3$, $x^{3} = 4$
(e) $ct = 5$, $x_{1} = 0$, $x_{2} = 3$, $x_{3} = 4$
(f) $ct = 5$, $x^{1} = 2$, $x^{2} = 3$, $x^{3} = 4$
(g) $ct = 5$, $x^{1} = 0$, $x^{2} = 3$, $x^{3} = -4$

and calculate $x^{\alpha} x_{\alpha}$ for each case.

PROBLEM 18

Assume that a rocket ship leaves the earth in the year 2020. One of a set of twins born in 2000 remains on earth; the other rides in the rocket. The rocket ship is so constructed that it has an acceleration g in its own frame (to make the occupants feel comfortable). It accelerates on a straight-line path for 5 years (by its own clocks), decelerates at the same rate for 5 more years, turns around, accelerates for 5 years, decelerates for 5 years, and lands on earth. The twin in the rocket is 40 years old. What year is on earth?

Use $g = 9.81 \ [m/s^2]$, one year $= 365 \times 24 \times 3600 \ [s]$, and the speed of light c as given in the script. (Hint: Find first $\zeta(\tau)$, where τ is the proper time of twin # 2 in the rocket and ζ is the rapidity of the spaceship with respect to our solar system.)