ADVANCED DYNAMICS — PHY 4241/5227 HOME AND CLASS WORK – SET 1

(January 6, 2010)

- (1) Consider light passing from medium 1 into medium 2. Use Fermat's principle to derive a relationship between the velocities of light in the media, v_1 and v_2 , and the angles of refraction, θ_1 and θ_2 (a figure will be given in class). Due January 6 in class (10 points).
- (2) Write down your expectations for this course. What are the main objectives? Due January 11 before class (up to 8 points).
- (3) Read the Handout, the first nine pages of "The Principle of Least Action" from Chapter 19 of "The Feynman Lectures on Physics", Vol. II. Due January 8 before class.

Assignments 4 to 7 are motivated by Feynman's text:

- (4) Show that "the mean square of something that deviates around an average ... is always greater that the square of the mean" (4 points).
- (5) What is a 3D conservative force? Write down two definitions (2 points).
- (6) Derive the Euler-Lagrange equations from

$$\delta \int_{t_1}^{t_2} dt L = 0$$
, $L = L(q_i, \dot{q}_i, t)$, $i = 1, \dots, n_f$.

Due January 11 in class (8 points).

- (7) Write down and solve the Euler-Lagrange equation for a free particle, $T = m\dot{x}^2/2$, U = 0. Due January 11 in class (2 points).
- (8) Draw 2D projections when possible.
 - 1. Write x, y, z in cylindrical coordinates ρ , ϕ , z (1 point).
 - 2. Write cylindrical coordinates in spherical coordinates (1 point).
 - 3. Write x, y, z in spherical coordinates r, θ , ϕ (1 point).
 - 4. Express unit vectors $\hat{\rho}$, $\hat{\phi}$ for cylindrical and \hat{r} , $\hat{\theta}$, $\hat{\phi}$ for spherical coordinates in terms of the cartesian unit vectors \hat{x} , \hat{y} , \hat{z} (3 points).
 - 5. Make a table of the nine dot products between spherical and Cartesian unit vectors (3 points).
 - 6. Express \vec{v} in spherical coordinates using also spherical unit vectors (3 points).
 - 7. Express \vec{v}^2 in spherical coordinates (2 points).

Due January 22 before class.