
Kepler Problem { PHY 4241 NotesBernd A. Berg aa) Department of Physis, Florida State University, Tallahassee, FL 32306-4350(Dated: Marh 4, 2010)Kepler problem as disussed in lass.PACS numbers:I. SOLUTION OF THE KEPLER PROBLEMFOR NUMERICAL IMPLEMENTATIONThe purpose of this setion is to ast the analytialsolution of the Kepler problem into a form, whih allowsfor easy implementation into a omputer program (heredone in Fortran). The �nal solutions are translated bakto the initially given inertial system. There are manytreatments of the Kepler problem, for instane [1, 2℄. Wefollow to some extent by Landau and Lifshiz.A. Central potential problemLet t be the time and the masses be m1 and m2.In a frame � de�ned by Cartesian orthonormal ve-tors ê1; ê2; ê3 positions and veloities of the masses mi,(i = 1; 2) are given by:~ri(t) = 0�x1i (t)x2i (t)x3i (t)1A and ~vi(t) = 0� _x1i (t)_x2i (t)_x3i (t)1A (1)where the dot denotes the time derivative. For positionsand veloities the initial onditions at time t0 are~ri(t0) and ~vi(t0) ; i = 1; 2 (2)in the frame �. The omputer program will alulate~ri(t) and ~vi(t), i = 1; 2 for any desired time t.We denote the total mass byM = m1 +m2 ; (3)the Center of Mass (CM) position and veloity are de-�ned by ~rm(t) = m1 ~r1(t) +m2 ~r2(t)M ; (4)~vm(t) = m1 ~v1(t) +m2 ~v2(t)M : (5)Due to momentum onservation one �nds~vm(t) = ~vm(t0) and (6)~rm(t) = ~rm(t0) + ~vm(t0)4t ; 4t = (t� t0) : (7)De�ning the di�erene oordinates and veloities by~r12(t) = ~r1(t)� ~r2(t) ; (8)~v12(t) = ~v1(t)� ~v2(t) ; (9)

the positions of the partiles are~r1(t) = ~rm(t) + m2 ~r12(t)M ; (10)~r2(t) = ~rm(t)� m1 ~r12(t)M : (11)These equations show that the CM is loated in betweenthe partiles on the straight line onneting them. Equa-tions for the veloities are de�ned by taking the timederivatives.So, the task has beome to solve the equations of mo-tion for the di�erene oordinates and to implement thesolution numerially. In the following we used the nota-tion r12 = j~r12(t)j : (12)For a entral potential U(r12) the energyE = m1 ~v1(t)22 + m2 ~v2(t)22 + U(r12) (13)is onserved, i.e., does not depend on the time t.As the di�erene oordinate ~r12(t) stays invariant un-der transformation to the CM frame �0 de�ned by~r 0m(t) = 0 : (14)We an alulate its time dependene in the CM systemand still use Eq. (10) and (11) to �nd the time depen-dene of the original oordinates. In the CM systemsthese equations simplify to~r 01(t) = m2 ~r 012M and ~r 02(t) = �m1 ~r 012M : (15)In the following we drop the primes and ontinue to workin the CM frame (we shall use the primes for yet anotherframe soon).Inserting the derivatives of equation (15) (withoutprimes) into the energy onservation (13), we �ndEm = �~v12(t)22 + U(r12) where � = m1m2M : (16)� is alled redued mass. To simplify the notation, wedrop the subsript 12:~r(t) = ~r12(t) and ~v(t) = ~v12(t) : (17)



2With ~r(t0) and ~v(t0) given, we want to �nd ~r(t) for theental potential problem (16). Besides momentum andenergy the angular momentum is onserved:~L = ~r1 � ~p1 + ~r2 � ~p2 (18)where ~pi = mi~v, i = 1; 2 are the momenta of the masses.Using (15) we have~L = �~r(t)� ~v(t) = �~r(t0)� ~v(t0) : (19)We deal with ~L = 0 later. Assuming ~L 6= 0, the motiontakes plae in the plane spanned by ~r(t0) and ~v(t0) and itis onvenient to desribe to desribe in in a new oordi-nate frame �0 de�ned by Cartesian orthonormal vetorsê01; ê02; ê03 witĥe01 = ~r(t0)j~r(t0)j ; (20)ê02 = ~v(t0)� [~v(t0) � ê01℄ ê01j~v(t0)� [~v(t0) � ê01℄ ê01j ; (21)ê03 = L̂ = ~LL with L = j~Lj : (22)By de�nition of the angular momentum this is a right-handed frame. In this frame the absolute value of theangular momentum readsL = � r(t)2 _� 0(t) ; (23)where the azimuth angle �0 is de�ned byx0(t) = r(t) os[�0(t)℄ ; (24)y0(t) = r(t) sin[�0(t)℄ : (25)De�ning the e�etive potential byUe�(r) = U(r) + L22� r(t)2 ; (26)where L2= [2�r(t)2℄ is alled entrifugal energy, the en-ergy onservation (16) beomesEm = �2 _r(t)2 + Ue�(r) : (27)Separation of variables yieldsdt = drr �2 [Em � Ue�(r)℄ ;4t = t� t0 = Z r(t)r(t0) drr �2 [Em � Ue�(r)℄ : (28)To get �0(t) we use (23):d�0 = Ldt� r2 = Ldrr2p2� [Em � Ue�(r)℄4�0 = �0(t)� �0(t0) (29)= Z r(t)r(t0) Ldrr2p2� [Em � Ue�(r)℄ ;where due to the hoie of the �0 oordinate frame ofEq. (20) to (22) we have�0(t0) = 0 : (30)
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FIG. 1: Potential and e�etive potential for the Kepler prob-lem. B. Kepler problemWe speialize now to the gravitational potentialU(r) = ��r with � = Gm1m2 : (31)The e�etive potential beomesUe�(r) = ��r + L22� r(t)2 : (32)An example is shown in Fig. 1. For Em � 0 the distanebetween the masses esapes to in�nity, while for Em <0 it is on�ned between rmin and rmax. There are nosolutions for Em < Umine� withUmine� = Ue�(r0min) = ��22 �L2 ; r0min = L2�� : (33)At r0min the orbit is a irle. For (31) the solution of theintegral (29) is elementary�0(t) = aros L=r(t)� ��=Lp2�Em + �2�2=L2!� aros L=r(t0)� ��=Lp2�Em + �2�2=L2! (34)We map on the oordinate onventions of the literature[1, 2℄ in whih the rmin position, alled perihelion or peri-enter, is at � = 0. This de�nes the the azimuth angle�(t) = aros L=r(t)� ��=Lp2�Em + �2�2=L2! ; (35)so that �0(t) = �(t)� �(t0) (36)



3holds for the previously introdued �0(t). The angle �(t)is de�ned with respet to a oordinate system, whih weall �l (l for literature). It is rotated with respet to �0by �(t0) about the ommon ê03 axis.We an write Eq. (35 asos[�(t)℄ = L=r(t)� ��=L(��=L)p1 + 2EmL2=(��2) : (37)With the de�nitions of the parameter p, 2p is alled thelatus retum, and the eentriity e,p = L2�� and e =s1 + 2EmL2��2 ; (38)the orbit in �l beomespr(t) = 1 + e os[�(t)℄ or r(t) = p1 + e os[�(t)℄ : (39)This is a oni setion with the oordinate origin in afoal point. The shortest distane from the foal point isrmin = p1 + e ; (40)whih orresponds to the perienter. For Umine� < Em <0 the orbit is an ellipse and the largest distane from thefoal point is rmax = p1� e ; (41)whih is orresponds to the apoenter. The turning pointsrmin and rmax of the orbit are also alled apsides. Theyare indiated in Fig. 1. The large half-axis isa = p1� e2 = �2jEmj (42)and the small half-axisb = pp1� e2 = Lp2�jEmj : (43)The ellipse beomes a irle for e = 0 (Em = Umine� ). Theposition and veloity vetors with be orthogonal ~r �~v = 0,and we have a relation between their magnitudes. Withr0 = r(t0) = j~r(t0)j ; (44)v0 = v(t0) = j~v(t0)j ; (45)the relation Em = Umine� yields:�2 (v0)2 � �r0 = ��22 1� (r0)2(v0)2 ; (46)(v0)4 � 2�� r0 (v0)2 + �2�2(r0)2 = 0 : (47)

The argument of the �p part of the solution turns outto be zero, so that we end up with the unique resultv0 =r �� r0 (48)
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FIG. 2: Elliptial and hyperboli orbits orresponding to theinitial onditons of table I.and ~v0 � ~r0 = 0.For Em > 0 (e > 1) the orbits are hyperboli andesape to in�nity for the two solutions for the equation1 + e os(�1) = 0. For Em = 0 the orbit is paraboliand �1 = �.Masses Initial Positions Initial Veloities# i mi x1i;0 x2i;0 x3i;0 _x1i;0 _x2i;0 _x3i;01 1 0.651 0.585 -0.238 -0.755 -0.828 -0.865 -0.7262 0.931 -0.096 0.000 0.357 -0.209 0.107 -0.6602 1 1.510 0.460 -0.359 -0.234 -0.918 -0.941 -0.3232 0.126 -0.066 -0.090 -0.809 0.789 0.788 0.6203 1 1.328 -0.125 0.898 0.194 -0.452 0.172 0.1252 1.999 -0.449 -0.085 -0.454 -0.976 -0.990 -0.9684 1 0.180 0.204 -0.968 -0.753 -0.811 -0.632 0.7842 1.560 -0.889 -0.979 0.854 -0.323 -0.774 -0.533TABLE I: Examples of initial onditions orresponding to or-bits shown in Fig. 2.In Fig. 2 we give examples of orbits in the �l frame,whih orrespond to the initial onditions and veloitiesompiled in table I. Crosses in the �gure indiate theorresponding initial positions in the �l frame.
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