
Kepler Problem { PHY 4241 NotesBernd A. Berg aa) Department of Physi
s, Florida State University, Tallahassee, FL 32306-4350(Dated: Mar
h 4, 2010)Kepler problem as dis
ussed in 
lass.PACS numbers:I. SOLUTION OF THE KEPLER PROBLEMFOR NUMERICAL IMPLEMENTATIONThe purpose of this se
tion is to 
ast the analyti
alsolution of the Kepler problem into a form, whi
h allowsfor easy implementation into a 
omputer program (heredone in Fortran). The �nal solutions are translated ba
kto the initially given inertial system. There are manytreatments of the Kepler problem, for instan
e [1, 2℄. Wefollow to some extent by Landau and Lifs
hiz.A. Central potential problemLet t be the time and the masses be m1 and m2.In a frame � de�ned by Cartesian orthonormal ve
-tors ê1; ê2; ê3 positions and velo
ities of the masses mi,(i = 1; 2) are given by:~ri(t) = 0�x1i (t)x2i (t)x3i (t)1A and ~vi(t) = 0� _x1i (t)_x2i (t)_x3i (t)1A (1)where the dot denotes the time derivative. For positionsand velo
ities the initial 
onditions at time t0 are~ri(t0) and ~vi(t0) ; i = 1; 2 (2)in the frame �. The 
omputer program will 
al
ulate~ri(t) and ~vi(t), i = 1; 2 for any desired time t.We denote the total mass byM = m1 +m2 ; (3)the Center of Mass (CM) position and velo
ity are de-�ned by ~r
m(t) = m1 ~r1(t) +m2 ~r2(t)M ; (4)~v
m(t) = m1 ~v1(t) +m2 ~v2(t)M : (5)Due to momentum 
onservation one �nds~v
m(t) = ~v
m(t0) and (6)~r
m(t) = ~r
m(t0) + ~v
m(t0)4t ; 4t = (t� t0) : (7)De�ning the di�eren
e 
oordinates and velo
ities by~r12(t) = ~r1(t)� ~r2(t) ; (8)~v12(t) = ~v1(t)� ~v2(t) ; (9)

the positions of the parti
les are~r1(t) = ~r
m(t) + m2 ~r12(t)M ; (10)~r2(t) = ~r
m(t)� m1 ~r12(t)M : (11)These equations show that the CM is lo
ated in betweenthe parti
les on the straight line 
onne
ting them. Equa-tions for the velo
ities are de�ned by taking the timederivatives.So, the task has be
ome to solve the equations of mo-tion for the di�eren
e 
oordinates and to implement thesolution numeri
ally. In the following we used the nota-tion r12 = j~r12(t)j : (12)For a 
entral potential U(r12) the energyE = m1 ~v1(t)22 + m2 ~v2(t)22 + U(r12) (13)is 
onserved, i.e., does not depend on the time t.As the di�eren
e 
oordinate ~r12(t) stays invariant un-der transformation to the CM frame �0 de�ned by~r 0
m(t) = 0 : (14)We 
an 
al
ulate its time dependen
e in the CM systemand still use Eq. (10) and (11) to �nd the time depen-den
e of the original 
oordinates. In the CM systemsthese equations simplify to~r 01(t) = m2 ~r 012M and ~r 02(t) = �m1 ~r 012M : (15)In the following we drop the primes and 
ontinue to workin the CM frame (we shall use the primes for yet anotherframe soon).Inserting the derivatives of equation (15) (withoutprimes) into the energy 
onservation (13), we �ndE
m = �~v12(t)22 + U(r12) where � = m1m2M : (16)� is 
alled redu
ed mass. To simplify the notation, wedrop the subs
ript 12:~r(t) = ~r12(t) and ~v(t) = ~v12(t) : (17)



2With ~r(t0) and ~v(t0) given, we want to �nd ~r(t) for the
ental potential problem (16). Besides momentum andenergy the angular momentum is 
onserved:~L = ~r1 � ~p1 + ~r2 � ~p2 (18)where ~pi = mi~v, i = 1; 2 are the momenta of the masses.Using (15) we have~L = �~r(t)� ~v(t) = �~r(t0)� ~v(t0) : (19)We deal with ~L = 0 later. Assuming ~L 6= 0, the motiontakes pla
e in the plane spanned by ~r(t0) and ~v(t0) and itis 
onvenient to des
ribe to des
ribe in in a new 
oordi-nate frame �0 de�ned by Cartesian orthonormal ve
torsê01; ê02; ê03 witĥe01 = ~r(t0)j~r(t0)j ; (20)ê02 = ~v(t0)� [~v(t0) � ê01℄ ê01j~v(t0)� [~v(t0) � ê01℄ ê01j ; (21)ê03 = L̂ = ~LL with L = j~Lj : (22)By de�nition of the angular momentum this is a right-handed frame. In this frame the absolute value of theangular momentum readsL = � r(t)2 _� 0(t) ; (23)where the azimuth angle �0 is de�ned byx0(t) = r(t) 
os[�0(t)℄ ; (24)y0(t) = r(t) sin[�0(t)℄ : (25)De�ning the e�e
tive potential byUe�(r) = U(r) + L22� r(t)2 ; (26)where L2= [2�r(t)2℄ is 
alled 
entrifugal energy, the en-ergy 
onservation (16) be
omesE
m = �2 _r(t)2 + Ue�(r) : (27)Separation of variables yieldsdt = drr �2 [E
m � Ue�(r)℄ ;4t = t� t0 = Z r(t)r(t0) drr �2 [E
m � Ue�(r)℄ : (28)To get �0(t) we use (23):d�0 = Ldt� r2 = Ldrr2p2� [E
m � Ue�(r)℄4�0 = �0(t)� �0(t0) (29)= Z r(t)r(t0) Ldrr2p2� [E
m � Ue�(r)℄ ;where due to the 
hoi
e of the �0 
oordinate frame ofEq. (20) to (22) we have�0(t0) = 0 : (30)
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FIG. 1: Potential and e�e
tive potential for the Kepler prob-lem. B. Kepler problemWe spe
ialize now to the gravitational potentialU(r) = ��r with � = Gm1m2 : (31)The e�e
tive potential be
omesUe�(r) = ��r + L22� r(t)2 : (32)An example is shown in Fig. 1. For E
m � 0 the distan
ebetween the masses es
apes to in�nity, while for E
m <0 it is 
on�ned between rmin and rmax. There are nosolutions for E
m < Umine� withUmine� = Ue�(r0min) = ��22 �L2 ; r0min = L2�� : (33)At r0min the orbit is a 
ir
le. For (31) the solution of theintegral (29) is elementary�0(t) = ar

os L=r(t)� ��=Lp2�E
m + �2�2=L2!� ar

os L=r(t0)� ��=Lp2�E
m + �2�2=L2! (34)We map on the 
oordinate 
onventions of the literature[1, 2℄ in whi
h the rmin position, 
alled perihelion or peri-
enter, is at � = 0. This de�nes the the azimuth angle�(t) = ar

os L=r(t)� ��=Lp2�E
m + �2�2=L2! ; (35)so that �0(t) = �(t)� �(t0) (36)



3holds for the previously introdu
ed �0(t). The angle �(t)is de�ned with respe
t to a 
oordinate system, whi
h we
all �l (l for literature). It is rotated with respe
t to �0by �(t0) about the 
ommon ê03 axis.We 
an write Eq. (35 as
os[�(t)℄ = L=r(t)� ��=L(��=L)p1 + 2E
mL2=(��2) : (37)With the de�nitions of the parameter p, 2p is 
alled thelatus re
tum, and the e

entri
ity e,p = L2�� and e =s1 + 2E
mL2��2 ; (38)the orbit in �l be
omespr(t) = 1 + e 
os[�(t)℄ or r(t) = p1 + e 
os[�(t)℄ : (39)This is a 
oni
 se
tion with the 
oordinate origin in afo
al point. The shortest distan
e from the fo
al point isrmin = p1 + e ; (40)whi
h 
orresponds to the peri
enter. For Umine� < E
m <0 the orbit is an ellipse and the largest distan
e from thefo
al point is rmax = p1� e ; (41)whi
h is 
orresponds to the apo
enter. The turning pointsrmin and rmax of the orbit are also 
alled apsides. Theyare indi
ated in Fig. 1. The large half-axis isa = p1� e2 = �2jE
mj (42)and the small half-axisb = pp1� e2 = Lp2�jE
mj : (43)The ellipse be
omes a 
ir
le for e = 0 (E
m = Umine� ). Theposition and velo
ity ve
tors with be orthogonal ~r �~v = 0,and we have a relation between their magnitudes. Withr0 = r(t0) = j~r(t0)j ; (44)v0 = v(t0) = j~v(t0)j ; (45)the relation E
m = Umine� yields:�2 (v0)2 � �r0 = ��22 1� (r0)2(v0)2 ; (46)(v0)4 � 2�� r0 (v0)2 + �2�2(r0)2 = 0 : (47)

The argument of the �p part of the solution turns outto be zero, so that we end up with the unique resultv0 =r �� r0 (48)
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FIG. 2: Ellipti
al and hyperboli
 orbits 
orresponding to theinitial 
onditons of table I.and ~v0 � ~r0 = 0.For E
m > 0 (e > 1) the orbits are hyperboli
 andes
ape to in�nity for the two solutions for the equation1 + e 
os(�1) = 0. For E
m = 0 the orbit is paraboli
and �1 = �.Masses Initial Positions Initial Velo
ities# i mi x1i;0 x2i;0 x3i;0 _x1i;0 _x2i;0 _x3i;01 1 0.651 0.585 -0.238 -0.755 -0.828 -0.865 -0.7262 0.931 -0.096 0.000 0.357 -0.209 0.107 -0.6602 1 1.510 0.460 -0.359 -0.234 -0.918 -0.941 -0.3232 0.126 -0.066 -0.090 -0.809 0.789 0.788 0.6203 1 1.328 -0.125 0.898 0.194 -0.452 0.172 0.1252 1.999 -0.449 -0.085 -0.454 -0.976 -0.990 -0.9684 1 0.180 0.204 -0.968 -0.753 -0.811 -0.632 0.7842 1.560 -0.889 -0.979 0.854 -0.323 -0.774 -0.533TABLE I: Examples of initial 
onditions 
orresponding to or-bits shown in Fig. 2.In Fig. 2 we give examples of orbits in the �l frame,whi
h 
orrespond to the initial 
onditions and velo
ities
ompiled in table I. Crosses in the �gure indi
ate the
orresponding initial positions in the �l frame.
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