
Solution for assignment 20 set 5

Liouville’s Theorem

We consider motion of point particles with n degrees of freedom in phase space,
which is described by a Hamiltonian

H(q1, . . . , qn; p1, . . . , pn) .

Let ρ(q1, . . . , qn; p1, . . . , pn; t) be the density in phase space and the velocity of the
density element is the vector

~v = (q1, . . . , qn; p1, . . . , pn) .

The gradient is now also defined in phase space (q̂i and p̂i are unit vectors):
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The continuity equation reads
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Using Hamilton’s equations we have
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Interchanging the derivative these terms cancel one another and we are left with
Liouville’s theorem:
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This is the motion of an incompressible fluid, but in phase space instead of coordinate
space.


