Solution for assignment 20 set 5

Liouville’s Theorem

We consider motion of point particles with n degrees of freedom in phase space,
which is described by a Hamiltonian
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Let p(qi, .., qn;p1s---,Pn;t) be the density in phase space and the velocity of the
density element is the vector

U= (Q1a'-'>qn;p1>"'apn)‘

The gradient is now also defined in phase space (§; and p; are unit vectors):

n 0
—l— i .
;< P 81%)

The continuity equation reads

as j: vp holds. Therefore,
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Using Hamilton’s equations we have
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Interchanging the derivative these terms cancel one another and we are left with
Liouville’s theorem:
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This is the motion of an incompressible fluid, but in phase space instead of coordinate
space.



