ADVANCED DYNAMICS — PHY 4241/5227 SOLUTIONS – SET 12

Problem 45:

In units with c = 1 and time, distance in years: Always $t_{\text{news}} = t - x$.

In the first 5 years (time unit years, distance unit light years):

$$\zeta = \alpha \tau$$
, $\alpha = g/c$, $0 \le \tau \le 5 y$ (accelerating away from earth, $t = \sinh(\zeta)/\alpha$, $x = [\cosh(\zeta) - 1]/\alpha$.

With $\tau_1 = 5 y$, $\zeta_1 = \alpha \tau_1$, $t_1 = t(\zeta_1)$ and $x_1 = x(\zeta_1)$ we have in the next five years

$$\zeta = \zeta_1 - \alpha (\tau - \tau_1), \quad 5 \le \tau \le 10 y \text{ (slowing down)},$$

$$t = t_1 + [t_1 - \sinh(\zeta)/\alpha],$$

$$x = x_1 + \{x_1 - [\cosh(\zeta) - 1] / \alpha\}.$$

With $\tau_2 = 2 \tau_1$, $t_2 = 2 t_1$ and $t_2 = 2 t_1$ we have in the next five years

$$\zeta = \alpha (\tau_2 - \tau), \quad 10 \le \tau \le 15 y \text{ (accelerating towards earth)},$$

$$t = t_2 - \sinh(\zeta)/\alpha$$

$$x = x_2 - \left[\cosh(\zeta) - 1\right] / \alpha.$$

With $\tau_3 = 3 \tau_1$, and $t_3 = 3 t_1$ we have in the final five years $(\zeta_3 = \zeta_1, x_3 = x_1)$

$$\zeta = \zeta_1 + \alpha (\tau - \tau_3), \quad 15 \le \tau \le 20 y \text{ (slowing down)},$$

$$t = t_3 + t_1 + \sinh(\zeta)/\alpha \,,$$

$$x = x_1 - \left[\cosh(\zeta) - 1\right] / \alpha.$$

Remark: News from the spaceship, sent of at speed of light at its time τ , reaches earth at time t to earth = t + x.