ADVANCED DYNAMICS — PHY 4241/5227 HOME AND CLASS WORK – SET 7

(February 21, 2011)

Read Landau-Lifshitz §23. Due February 23. Read Landau-Lifshitz §24. Due February 25. Read Landau-Lifshitz §25. Due March 2. Read Landau-Lifshitz §26. Due March 4.

- (21a) Derive the results of problem 4 §21 of Landau and Lifshitz. Due February 23 before class (3 points).
- (21b) Let $\gamma = \omega + \epsilon$. Taylor expand

$$x(t) = a \cos(\omega t + \alpha) + \frac{f \left[\cos(\gamma t + \beta) - \cos(\omega t + \beta)\right]}{m (\omega^2 - \gamma^2)}$$

to order ϵ and take the limit $\epsilon \to 0$. Due in class (3 points).

- (22) Derive the results of problem 1 §22 of Landau and Lifshitz. Due February 25 before class (4 points).
- (10b) Calculate the normal modes (eigenfrequencies) of the pendulum of problem 10, set 2. Due February 28 before class (4 points).
- (10c) Continue with the double pendulum from assignment 10b.
 - 1. Use the eigenfrequencies ω_{\pm} given in the posted solution of 10b and normal coordinates (Landau-Lifshitz p.67/8) to write down the general solution for the two angles.
 - 2. Express the integration constants of your solution through the angular positions and velocities at time t = 0, denoted by ϕ_0 , $\dot{\phi}_0$, ψ_0 , $\dot{\psi}_0$.
 - 3. Use $\sqrt{l/g}$ as time unit and plot the solutions $\phi(t)$ and $\psi(t)$ up to $t = 50 \sqrt{l/g}$ for initial conditions $\phi_0 = 0$, $\dot{\phi}_0 = 1$, $\psi_0 = 0$, $\dot{\psi}_0 = -1$.

Due March 4 before class (10 points).

(21c) Consider $x(t) = a \exp(-\lambda t) \cos(\omega t + \alpha)$. Let $\omega = \epsilon$, $a = a_1/\epsilon$, $\alpha = \pi/2 + \epsilon/a_2$, $a_1, a_2 \neq 0$ and calculate x(t) in the limit $\epsilon \to 0$. Due March 14 before class (3 points).