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Chapter 1

A self-contained summary of the theory of special relativity is given, which provides the
space-time frame for classical electrodynamics. Historically [2] special relativity emerged
out of electromagnetism. Nowadays, is deserves to be emphasized that special relativity
restricts severely the possibilities for electromagnetic equations.

1.1 Special Relativity
Let us deal with space and time in vacuum. The conventional time unit is the
second [s]. (1.1)

Here and in the following abbreviations for units are placed in brackets [ |. For most of the
20th century the second was defined in terms of the rotation of the earth as % X % X 2—14 of the
mean solar day. Nowadays most accurate time measurements rely on atomic clocks. They
work by tuning a electric frequency into resonance with an atomic transition. Consequently,
the second has been defined, so that the frequency of the light between the two hyperfine
levels of the ground state of the cesium '32C's atom is exactly 9,192,631,770 cycles per second.

Special relativity is founded on two basic postulates:

1. Galilee invariance: The laws of nature are independent of any uniform, translational
motion of the reference frame.

This postulate gives rise to a triple infinite set of reference frames moving with constant
velocities relative to one another. They are called inertial frames. For a freely moving
body, i.e. a body which is not acted upon by an external force, inertial systems exist. The
differential equations which describe physical laws take the same form in all inertial frames.
Galilee invariance was known long before Einstein.

2. The speed c of light in empty space is independent of the motion of its source.
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The second Postulate was introduced by Einstein 1905 [2]. It implies that ¢ takes the
same constant value in all inertial frames. Transformations between inertial frames follow,
which have far reaching physical consequences.

The distance unit

1 meter [m] = 100 centimeters [cm] (1.2)

was originally defined by two scratches on a bar made of platinum—iridium alloy kept at the
International Bureau of Weights and Measures in Sevres, France. As measurements of the
speed of light became increasingly accurate, Postulate 2 has been exploited to define the
distance unit. The meter is now defined [6] as the distance traveled by light in empty space
during the time of 1/299,792 458 [s]. This makes the speed of light exactly

¢ = 299,792,458 [m/s]. (1.3)

1.1.1 Natural Units

The units for second (1.1) and meter (1.2) are not independent, as the speed of light is a
universal constant. This allows to define natural units, which are frequently used in nuclear,
particle and astro physics. They define

c=1 (1.4)
as a dimensionless constant, so that
1 [s] = 299,792,458 [m]

holds. The advantage of natural units is that factors of ¢ disappear in calculations. The
disadvantage is that, for converting back to conventional units the appropriate factors have
to be recovered by dimensional analysis. For instance, if time is given in seconds z = t in
natural units converts to = ¢t with x in meters and ¢ given by (1.3).

1.1.2 Definition of distances and synchronization of clocks

Let us use the concepts of Galilee invariance and of a constant speed of light to reduce
measurements of spatial distances to time measurements. We consider an inertial frame K
with coordinates (t,Z) and place observers at rest at different places 7 in K. The observers
are equipped with clocks of identical making, to define the time ¢ at . The origin (¢, 6) of K
is defined by placing an observer Oy with a clock at ¥ = 0. We like to place another observer
O, at @ to define (¢,Z1). How can O; know to be at 717 By using a mirror he can reflect
light flashed by observer Oy at him. Observer Oy measures the polar and azimuthal angles
(0, ) at which he emits the light and

|.l_:1’ :CAt/Q,
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where At is the time light needs to travel to O; and back. This determines ¥; and Oq signals
this information to O;. By repeating the measurement, he can make sure that O; is not
moving with respect to K. For an idealized, force free environment the observers will then
never start moving with respect to one another. O; synchronizes her clock by setting it to

ty =1+ |Zl/c

where Oy emits (superscript e) the signal at ¢§ and O; receives (superscript r) it at ¢]. When
O, flashes later his instant time t§ over to Oy, the clock of Oy will show time t§ = t§ + |7 |/c
when receiving the signal. In the same way the time ¢ can be defined at any desired point ¥
in K.

Now we consider an inertial frame K’ with coordinates (¢/,Z"), moving with constant
velocity v with respect to K. The origin of K’ is defined through an observer Of. How does
one know that Of moves with constant velocity ¥ with respect to Og? At times ¢ and t§
observer Oy may flash light signals at O, which are reflected and arrive back after time
intervals At; and Aty on the clock of Oy. From principle 2 it follows that the reflected light
needs the same time to travel from Of to Oy, as it needed to travel from Oy to Of. Hence,

Oy concludes that Of received the signals at
th =1t + At;/2, (1=1,2) (1.5)

in the Oy time. This simple equation becomes quite complicated for non-relativistic physics,
because the speed on the return path would then be distinct from that on the arrival path
(consider for instance elastic scattering of a very light particle on a heavy surface). The
constant velocity of light implies that relativistic distance measurements are simpler than
such non-relativistic measurements. For observer Oy the positions 7 and 25 of Oy at times
t7 and t}, respectively, are now defined through the angles (6;, ¢;) at which the light comes
back and

|| = Atic/2, (i=1,2). (1.6)

For the assumed force free environment observer O, can conclude that O moves with respect
to him with uniform velocity

T= (T —30)/(t) — 1) . (1.7)
Actually, one measurement is sufficient to obtain the velocity when one employs the
relativistic Doppler effect as discussed later in section 1.1.8. Oy may repeat the procedure

at later times to check that O) moves indeed with uniform velocity.
The equation of motion for the origin of K’ is as observed by Oy is

(2 =0) =27, + 7t (1.8)

with oy = 71 — U't], expressing the fact that for ¢t = t] observer Of is at &;. Shifting his
space convention by a constant vector, observer Oy can achieve 7y = 0, so that equation
(1.8) becomes

!

7@ =0) =it
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Similarly, observer O finds out that O, moves with velocity v/ = —v. According to
principle 1, observers in K’ can now go ahead to define ¢’ for any point #’ in K’. Observer
O}, may choose his space convention so that

/

7 (F=0)=—5t

holds.

1.1.3 Lorentz invariance and Minkowski space

Having defined time and space operationally, let us focus on a more abstract discussion. We
consider the two inertial frames with uniform relative motion ¢: K with coordinates (¢, ) and
K’ with coordinates (t',Z’). We demand that at time ¢ = ¢’ = 0 their two origins coincide.
Now, imagine a spherical shell of radiation originating at time ¢ = 0 from ¥ = ¥’ = 0. The
propagation of the wavefront is described by

AP —a? -y -2 =0 inK, (1.9)

and by
A2ty Y2 =0 in K. (1.10)

We define 4-vectors (a = 0, 1,2, 3) by

(a%) = (Zf) and (za) = (ct, —7) . (1.11)

Due to a more general notation, which is explained in section 1.1.5, the components x* are
called contravariant and the components z, covariant. In matrix notation the contravariant
4-vector (z®) is represented by a column and the covariant 4-vector (x,) as a row.

The FEinstein summation convention is defined by

3
Tar® =Y wea® = (2°) — 7%, (1.12)
a=0

and will be employed from here on. Equations (1.9) and (1.10) read then

T2t =2 2" =0. (1.13)

(Homogeneous) Lorentz transformations are defined as the group of transformations which
leave the distance s? = x,2® invariant:

Tor® =12 = s>, (1.14)

This equation implies (1.13), but the reverse is not true. An additional transformation, which
leaves (1.13, but not (1.14) invariant, is ’* = A z® and interpreted as a scale transformation.
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Future

—

S| Elsewhere A—=0 Elsewhere

Past

Figure 1.1: Minkowski space: Seen from the spacetime point A at the origin, the spacetime
points in the forward light cone are in the future, those in the backward light cone are in
the past and the spacelike points are “elsewhere”, because their time-ordering depends on
the inertial frame chosen. Paths of two clocks which separate at the origin (the straight line
one stays at rest) and merge again at a future space-time point B are also indicated. For
the paths shown the clock moved along the curved path will, at B, show an elapsed time of
about 70% of the elapsed time shown by the other clock (i.e. the one which stays at rest).

If the initial condition # = 0 and &' (# = 0) = Z(&') = 0 for t = 0 is replaced by an arbi-
trary one, the equation (x4 — Yo )(z* —y®) = (2/, — ¥, ) (2" — y'*) still holds. Inhomogeneous
Lorentz or Poincaré transformations are defined as the group of transformations which leave

2= (14 —ya)(x® —y*) invariant. (1.15)
In contrast to the Lorentz transformations the Poincaré transformations include invariance
under translations

% = 2%+ a® and y* — y* + a” (1.16)
where a® is a constant vector. Independently of Einstein, Poincaré had developed similar
ideas, but pursued a more cautious approach.

A fruitful concept is that of a 4-dimensional space-time, called Minkowski space. Equation
(1.15) gives the invariant metric of this space. Compared to the norm of 4-dimensional
Euclidean space, the crucial difference is the relative minus sign between time and space
components. The light cone of a 4-vector z§ is defined as the set of vectors x® which satisfy

(x —20)* = (20 — Toa) (2% — 2§) = 0.
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The light cone separates events which are timelike and spacelike with respect to xf, namely
(x — 20)> > 0 for timelike

and
(x —x0)? < 0 for spacelike.

We shall see soon, compare equation (1.22), that the time-ordering of spacelike points is
distinct in different inertial frames, whereas it is the same for timelike points. For the choice
x§ = 0 this Minkowski space situation is depicted in figure 1.1. On the abscissa we have the
projection of the three dimensional Euclidean space on r = |Z|. The regions future and past
of this figure are the timelike points of xq = 0, whereas elsewhere are the spacelike points.

To understand special relativity in some depth, we have to explore Lorentz and Poincaré
transformations in some details. Before we come to this, we consider the two-dimensional
case and introduce some relevant calculus in the next two sections.

1.1.4 Two-Dimensional Relativistic Kinematics

We chose now ¥ in z-direction and restrict the discussion of to the z-axis:
At — (21 = H? — (2')? (1.17)

It is customary to define 2° = ct, 2% = ¢’ and f = v/c. We are looking for a linear

(i?) B (?z Z) (ﬁ) (1.18)

which fulfills (1.17) for all 2°, z'. Choosing ( > < > gives

transformation

> —d*=1 = a=cosh((), d= +sinh(¢) (1.19)
0
and choosing (il) = (?) gives
b —e* = -1 = e = cosh(n), b= %sinh(n) . (1.20)

Using now (i?) = (1) yields
[cosh(¢) + sinh(n)]* — [sinh(¢) 4 cosh(n)]* =0 = ¢ =1.

In equation (1.19) d = —sinh(() is conventionally used. We end up with

(3 )= (5500 wnid)): 1)
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where ( is called rapidity or boost variable, and has the interpretation of an angle in a
hyperbolic geometry. For our present purposes no knowledge of hyperbolic geometries is
required. In components (1.18) reads then

7% = +cosh(¢) 2" — sinh(¢) 2! (1.22)
7' = —sinh(¢) 2° + cosh(¢) z* (1.23)

An interesting feature of equation (1.22) is that for spacelike points, say ' > 2° > 0, a value
(o for the rapidity exists, so that

0 = +cosh(¢) 2" — sinh(¢) x*

and, therefore,
sign(2'") = —sign(z°)
for ¢ > (o, i.e. the time-ordering becomes reversed, whereas for timelike points such a reversal
of the time-ordering is impossible as then |2°) > |z'|. In figure 1.1 this is emphasized by
calling the spacelike (with respect to zq = 0) region elsewhere in contrast to future and past.
The physical interpretation is straightforward. Seen from K, the origin /! = 0 of K’
moves with constant velocity v. In K this corresponds to the equation

0 = —sinh(¢) 2° + cosh(¢) ot

and the rapidity is related to the velocity between the frames by

v ! _sinh(¢)
B = ¢ 20 cosh(e) tanh(() . (1.24)

Another often used notation is

~v = cosh(() = !

N

Hence, the transformation (1.18) follows in the often stated form

and 7 = sinh(() . (1.25)

% = ~(2°—pBat), (1.26)
' = ~(zt—pBab). (1.27)

These equation are called Lorentz transformations. Lorentz discovered them first in his
studies of electrodynamics, but it remained due to Einstein [2] to fully understand their
physical meaning. We may perform two subsequent Lorentz transformations with rapidity
(1 and (5. They combine as follows:

(—i—cosh(@) —sinh(@)) (—i—cosh((l) —sinh((1)>
—sinh(¢y)  + cosh(() —sinh(¢1) +cosh(¢1)

_ (+cosh(Ge + (1) —sinh(G+ ()
- ( —sinh(¢, + (1)  +cosh(G + G) ) : (1.28)
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The rapidities add up as
(=G+G (1.29)

in the same way as velocities under Galilei transformations or angles for rotations about
the same axis. Note that the inverse to the transformation with rapidity (; is obtained for
(2 = —(;. The relativistic addition of velocities follows from (1.29). Let 5, = tanh(¢;) and

BQ = tanh(@), then

b= tanh((l + CQ) = %

holds. Another immediate consequence of the Lorentz transformations is the time dilatation:

(1.30)

A moving clock ticks slower. In K the position of the origin of K’ is given by
z' =v1°/c = tanh(¢) 2°
and the Lorentz transformation (1.22) gives

2 inh2
0 = cosh(¢)a? — sinh(() tan()a” = TR g0 coflf(o <

(1.31)

This works also the other way round. In K’ the position of the origin of K is given by
2! = —tanh(¢) z'°

and with this relation between z'! and z'° the inverse Lorentz transformation gives
2% = 2%/ cosh(¢) .

There is no paradox, because equal times at separate points in one frame are not equal in
another (remember that the definition of time in one frame relies already on the constant
speed of light). In particle physics the effect is day by day observed for the lifetimes of
unstable particles. To test time dilatation for macrosciopic clocks, we have to send a clock
on a roundtrip. For this an infinitesimal form of equation (1.31) is needed.

Allowing that 2° = 2! = 0 does not have to coincide with 2'© = z'' = 0, we consider
Poincaré transformations. The light radiation may originate in K at (zQ, z}) and in K’ at
(2%, zy'). This generalizes equation (1.17) to

0’02 112 0_ .0y2 1 1\2
(" —xg) —(x —xg) = (" —20)” — (2 —xp)7,
and the Lorentz transformations become
(27 = 2") = 7[(2° = 2p) = B (2" — xp)], (1.32)

(2" —zg") = v[(z" — 2) — B (2" — 2])]. (1.33)

Using the rapidity variable and matrix notation:

A (e S B Gt ) (1.34)
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In addition we have invariance under translations (1.16).

Let us explore Minkowski space in more details. It allows to depict world lines of particles.
A useful concept for a particle (or observer) traveling along its world line is its proper time
or eigenzeit. Assume the particle moves with velocity v(t), then da! = 3dx® holds, and the
infinitesimal invariant along its 2D world line is

(ds)? = (dx°)? — (dz")? = (cdt)* (1 — B°) . (1.35)

Each instantaneous rest frame of the particle is an inertial frame. The increment of time dr
in such an instantaneous rest frame is a Lorentz invariant quantity which takes the form

dr =dt\/1 -2 =dty ' =dt/cosh(, (1.36)

where 7 is called proper time. Clocks click by their proper time. As v(7) > 1 time dilatation
follows 5 - "
dt =ty —t1 = / y(r)dr = / cosh((7)dr > 1 — 1 . (1.37)

t1 1 71

A moving clock runs more slowly than a stationary clock. Now equation (1.37) applies
to general paths of a clock, including those with acceleration. Relevant is that the entire
derivation was done with respect to the inertial system in which the time coordinates o
and t; are defined. Two experimental examples for time dilatation are: (i) Time of flight
of unstable particles in high energy scattering experiments, where these particles move at
velocities close to the speed of light. (ii) Explicit verification through travel with atomic
clocks on air planes [4, 9].

Next, let us discuss the relation between velocity and acceleration. Assume an acce-
laration a in the instanteneous rest frame. To have convenient units we define a@ = a/c

and
df =d¢ = adr (1.38)

holds in the instantenous rest frame. The change in another frame follow from the addition
theorem of velocities (1.30)

adr +

:1+ozd7'ﬁ_ﬁ:a<1_52)d7. (39

dp
As rapidities simply add up (1.29) their change is just
d¢ = (adr + () — ( = adr . (1.40)

Using the proper time, the change of the rapidity is analogue to the change of the velocity
in non-relativistic mechanics,

(~G= [ a(r)dr. (1.41)

0

In particular, if « is constant we can integrate and find

((1)=ar+{ for a constant . (1.42)
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1.1.5 Vector and tensor notation

One defines a general transformation x — 2’ through
P =a2"%x) =2 (xo, z! x2,:z:3) , a=0,1,2,3. (1.43)

This means, x'® is a function of four variables and, when it is needed, this function is assumed
to be sufficiently often differentiable with respect to each of its arguments. In the following
we consider the transformation properties of various quantities (scalars, vectors and tensors)
under x — /.

A scalar is a single quantity whose value is not changed under the transformation (1.43).
The proper time is and example.

A J-vector A%, (o = 0,1,2,3) is said contravariant if its components transform according

to o
oz 4P

I
An example is A* = dz®, where (1.44) reduces to the well-known rule for the differential of

A/Oé

(1.44)

a function of several variable (f*(x) = 2'*(x)):

ax/a
o B
dz' = 5 dx”.
Remark: In this general framework the vector ¢ is not always contravariant. When a linear
transformation
e = a’ x”

holds, i.e., with space-time independent coefficients a“, this is the case and one finds
83:/04 o
Er

In the present framework we are only interested in linear transformation. Space-time
dependent transformations lead into general relativity.
A 4-vector is said covariant when it transforms like

OxP
B, = (91:’“35' (1.45)
An example is
0
B =0, = —— 14
e (1.46)
because of
0 B oxP 0
or'e  Qx'e dxbB’

The inner or scalar product of two vectors is defined as the product of the components of a
covariant and a contravariant vector:

B- A= B,A" (1.47)
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It follows from (1.44) and (1.45) that the scalar product is an invariant under the transfor-
mation (1.43):

,  0xP Oz oxP

B A= BgA" = —— BgA” = §” BgA' = B - A.
ozl gz "’ dar P vh
Here the Kronecker delta is defined by:
1 for a=p
(0 ,8 _ bl
5= % _{0 for a # . (1.48)

Vectors are rank one tensors. Tensors of general rank k are quantities with & indices, like
for instance

a1ae...
T GO

The convention is that the upper indices transform contravariant and the lower transform
covariant. For instance, a contravariant tensor of rank two F*? consists of 16 quantities that
transform according to

ai/a ai/ﬁ e

ox7 0xf '

A covariant tensor of rank two G4 transforms as

F/Ot,B —

, 0x 02°
o8 = Ggtor 9atp "

The inner product or contraction with respect to a pair of indices, either on the same tensor or
between different tensors, is defined in analogy with (1.47). One index has to be contravariant
and the other covariant.

A tensor S®+% is said to be symmetric in o and 3 when

Sa,B — Sﬁa
A tensor A®+# is said to be antisymmetric in o and 3 when

Aaﬁ — _Aﬁa

Proof:

and consequently zero. The first step exploits symmetry and antisymmetry, and the second
step renames the summation indices. Every tensor can be written as a sum of its symmetric
and antisymmetric parts in two if its indices
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by simply defining

Ts..a...ﬁ... _ 1 (T...a...g... + T...,B...a...) and TA.a..ﬂ... _ ; (T...a‘..ﬁ... _ T...ﬂ...a...) ' (1.51)

So far the results and definitions are general. We now specialize to Poincaré transforma-

tions. The specific geometry of the space—time of special relativity is defined by the invariant

2

distance s*, see equation (1.15). In differential form, the infinitesimal interval ds defines the

proper time cdr = ds,
(ds)? = (dz°)* — (dz")? — (dx?)* — (dz®)% (1.52)

Here we have used superscripts on the coordinates in accordance to our insight that dx® is
a contravariant vector. Introducing a metric tensor g,z we re-write equation (1.52) as

(ds)* = gap dzdaP. (1.53)
Comparing (1.52) and (1.53) we see that for special relativity g,z is diagonal:
goo =1, g11 = g22 = g33 = —1 and g, =0 for a # . (1.54)

Comparing (1.53) with the invariant scalar product (1.47), we conclude that

To = Jap 2P,

The covariant metric tensor lowers the indices, i.e. transforms a contravariant into a covariant
vector. Correspondingly the contravariant metric tensor ¢®° is defined to raise indices:

% = gc“ﬁ zg.
The last two equations and the symmetry of g,s imply
Jory gwﬁ — 5aﬁ

for the contraction of contravariant and covariant metric tensors. This is solved by ¢*? being
the normalized co—factor of g,3. For the diagonal matrix (1.54) the result is simply

9% = gap. (1.55)

Consequently the equations

and, compare (1.46),

(0a) = <cgt : V) , () = . (1.56)
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hold. It follows that the 4-divergence of a 4-vector

N . O0A° ~
0“Ay = 0, A —@—FV-A

and the d’Alembert (4-dimensional Laplace) operator
5 \?2

= 0,00 =|=—| —V?

O ( 8x0> \Y

are invariants. Sometimes the notation A = V? is used for the (3-dimensional) Laplace
operator.

1.1.6 Lorentz transformations

Let us now construct the Lorentz group. We seek a group of linear transformations

a Ife%
?=a%1", (= gr a’) (1.57)

such that the scalar product stays invariant:

B

1o a a _ sB 2
T, T =ay x50’ =x,2% =07 wp1.

As the xgz” are independent, this yields

B

b
a, ao‘,y = 5% & g aa7 =gpy < 0°pYsa aa,y = g -

In matrix notation

AgA =g, (1.58)
where g = (gga) is given by (1.54),
TR T R
_(BYy_]|%0 @1 Gy a3
A= (a7,) a2, a¥ a’ a% |’ (1.59)
3 .3 -3 3

ag ay a7y aj

1 =2 0 1 2 3
aoo %1 %2 %3 aoo a10 a20 @30
fl—(da)— a;” a7 a4y _|ay ay a4 a7y (1.60)
- B8 ) a 0 a 1 a 2 a 3 — CLO al CL2 CLS : :
2 2 2 2 2 2 2 2
~0 =1 =2 =73 0 1 2 3
as” az  az" as a’s Q3 Q3 Qa7

For this definition of the transpose matrix the row indices are contravariant and the column
indices are covariant, vice verse to the definition (1.11) for vectors and, similarly, ordinary
matrices. Certain properties of the transformation matrix A can be deduced from (1.58).
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Taking the determinant of both sides gives us det(AgA) = det(g) det(A)? = det(g). Since
det(g) = —1, we obtain
det(A) = +1. (1.61)

One distinguishes two classes of transformations. Proper Lorentz transformations are
continuously connected with the identity transformation A = 1. All other Lorentz
transformations are improper. Proper transformations have necessarily det(A) = 1. For
improper Lorentz transformations it is sufficient, but not necessary, to have det(A) = —1.
For instance A = —1 (space and time inversion) is an improper Lorentz transformation with
det(A) = +1.

Next the number of parameters, needed to specify completely a transformation in the
group, follows from (1.58). Since A and g are 4 X 4 matrices, we have 16 equations for
4> = 16 elements of A. But they are not all independent because of symmetry under
transposition. The off-diagonal equations are identical in pairs. Therefore, we have 4+6 = 10
linearly independent equations for the 16 elements of A. This means that there are siz free
parameters. In other words, the Lorentz group is a six-parameter group.

In the 19th century Lie invented the subsequent procedure to handle these parameters.
Let us now consider only proper Lorentz transformations. To construct A explicitly, Lie

makes the ansatz
oo LTL

nl’
n=0 """

where L is a 4 x 4 matrix. The determinant of A is
det(A) = det(el) = e™@), (1.62)
Note that det(A) = +1 implies that L is traceless. Equation (1.58) can be written
gAg= A", (1.63)

From the definition of L, L and the fact that ¢> = 1 we have (note (¢Lg)" = gL"g and
1= (X020 L"/nt) (5Zo(=L)"/nl))

A=el, gAg= e/l and Al =L,
Therefore, (1.63) is equivalent to

gLg=—L or (gL) = —gL.

The matrix gL is thus antisymmetric and it is left as an exercise to show that the general
form of L is:

(1.64)
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It is customary to expand L in terms of six generators:

3 3
L==3(6:8+ GEK;) and A= e 2im(0StGi), (1.65)

i=1

The matrices are defined by

00 0 0 0 0 0 0 00 0 0
00 0 0 0 0 0 1 00 —1 0
51_000—1’52_0000’53_0100’ (1.66)
00 1 0 0 -1 0 0 00 0 0
and
01 0 0 00 1 0 00 0 1
1 000 00 0 0 00 0 0
K1_0000’K2_1000’K3_0000’ (1.67)
00 0 0 00 0 0 1 000

They satisfy the following Lie algebra commutation relations:
LAy 3. 3
[Si, Sj] = Z El]kS]“ [S“ KJ] = Z El]kKk’ [K“ Kg] - _ Z Ez]ksk7
k=1 k=1 =1

where the commutator of two matrices is defined by [A, B] = AB — BA. Further €7* is the
completely antisymmetric Levi-Cevita tensor. Its definition in n—dimensions is

—1 for (iy,ig,...,1,) being an odd permutation of (1,2,...,n), (1.68)

o {—1—1 for (iy,42,...,4,) being an even permutation of (1,2, ...,n),
gitizein —
0 otherwise.

To get the physical interpretation of equation (1.65) for A, it is suitable to work out simple
examples. First, let ( = ¢1 = ¢ = 0 and ¢3 = ¢. Then (this is left as exercise)

1 0 0
0 cos¢ sing
0 —sin¢g cos¢
0 0 0

A=e % = : (1.69)

_ o O O

which describes a rotation by the angle ¢ (in the clockwise sense) around the é; axis. Next,
let p =(=(3=0and (; = (. Then

cosh( —sinh(

0
A e | TsibCcosh 0 (.70
0

0 0

_— o O O

is obtained, where ( is known as the boost parameter or rapidity. The structure is reminiscent
to a rotation, but with hyperbolic functions instead of circular, basically because of the
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relative negative sign between the space and time terms in eqn.(1.52). “Rotations” in the
2% — 2% planes are boosts and governed by an hyperbolic gemometry, whereas rotations in
the ' — 27 (i # j) planes are governed by the ordinary Euclidean geometry.

Finally, note that the parameters ¢;, (;, (i = 1,2,3) turn out to be real, as equation
(1.57) implies that the elements of A have to be real. In the next subsection relativistic

kinematics is discussed in more details.

1.1.7 Basic relativistic kinematics

The matrix (1.70) gives the Lorentz boost transformation, which we discussed before in the
2D context (1.22), (1.23),

7' = 2°cosh(¢) — 2'sinh(¢) = v (2° — Ba'), (1.71)
't = —2%sinh(¢) + 2! cosh(¢) = v (a' — p2"), (1.72)
7 = a2t (i=2,3). (1.73)

To find the transformation law of an arbitrary vector A in case of a general relative velocity
U, it is convenient to decompose A into components parallel and perpendicular to 5 = v/c.
Let 8 be the unit vector in 3 direction, then

A=Al + A+ with Al = BA.

Then the Lorentz transformation law is simply

A" = A%cosh(¢) — Allsinh(¢) = v( A° — pAl, (1.74)

A'll= —A%sinh(¢) + All cosh(¢) = v(—pA° + Al), (1.75)

At = At (1.76)

Here I have reserved the subscript notation A and A for use in connection with covariant

vectors: A = —Al and A, = —A*. We proceed deriving the addition theorem for velocity
vectors.

A particle moves with respect to K’ with velocity @ :

x/z — C—lulle(] ]

What is its velocity @ with respect to K7 Let us first assume that the velocity v between
the frames is in Z; direction and rederive (1.30). Substituting (1.72) for 2’! and (1.71) for
2’0 gives

1( — fa®) = ¢y (a0 — fet).
Sorting with respect to ! and z° yields

/1
v <1 + 2 2U> ot =ty (Wt o)’
c
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and using the definition of the velocity in K, ¥ = ¢ '@ 2°, one finds
1 n
1 x u-+v
=Cc—=—. 1.77
u ¢ 20 1+ u’lv/02 ( )
Along similar lines we have for i = 1, 2:
xi — cilu'ixo — Ciluli’}/ (CEO _ ﬁilil) )
Dividing by 2° gives
Ul — Uli’7<1 B vul/CQ) — iy L+ou't/e —vu't ) —v?/c? _ i v(1—=p5%) .
L4+vu'lt/c? l+ovu't/c?
Using 1 — 3% = 1/4? (1.25) we obtain for the i = 2,3 components
] u/z’
i = L (i=2,3). (1.78)

(1t o))

To derive these equations, ¥ was chosen along to the x!-axis. For general @ one only has to
decompose u into its components parallel and perpendicular to the o

i = uld + it

where 0 is the unit vector in ¢ direction, and obtains

| =/ ]
Y nd gt — (1.79)

I —
“ 1+ ullv/c? v (14 wlv/c?)

From this addition theorem of velocities it is obvious that the velocity itself is not part of
of a 4-vector. The relativistic generalization is given in subsection (1.1.9). It is left as an
exercise to relate these equations to the addition theorem for the rapidity (1.29.

The concepts of world lines in Minkowski space and proper time (eigenzeit generalized
immediately to 4D. Assume the particle moves with velocity #(t), then d¥ = gdxo holds,
and the infinitesimal invariant along its world line is

(ds)? = (da®)? — (dF)? = (cdt)? (1 — B?) (1.80)

and the relations (1.36) and (1.37) hold as in 2D.

1.1.8 Plane waves and the relativistic Doppler effect

Let us choose coordinates with respect to an inertial frame K. In complex notation a plane
wave is defined by the equation

W(z) =W(2°, &) = Wy expli (°2° — k)], (1.81)
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where Wy = Uy +1 V is a complex amplitude. The vector k is called wave vector. Tt becomes
a 4-vector (k%) by identifying
K =w/c (1.82)

as its zero-component, where w is the angular frequency of the wave. Waves of the form
(1.81) may either propagate in a medium (water, air, shock waves, etc.) or in vacuum (light
waves, particle waves in quantum mechanics). We are interested in the latter case, as the
other defines a preferred inertial frame where the medium is at rest. The phase of the wave
is defined by

O(z) =P’ 7) =k"2’ — kT=wt—k7T. (1.83)

When (k%) is a 4-vector, it follows that the phase is a scalar, invariant under Lorentz
transformations

() =K, 2" =kox®=D(x). (1.84)

That this is correct can be seen as follows: For an observer at a fixed position Z (note the
term k Z is then constant) the wave performs a periodic motion with period

1
T = = (1.85)
where v is the frequency. In particular, the phase (and hence the wave) takes identical
values on the two-dimensional hyperplanes perpendicular to k. Let k be the unit vector in k
direction. Decomposing 7 into components parallel and perpendicular to E, i =alk+ 7zt
the phase becomes
d=wt—kal, (1.86)

where k = ]/5 | is the length of the vector k. Phases which differ by multiples of 27 give the
same values for the wave W. For example, when we take Vj; = 0, the real part of the wave

becomes
W, = Uy cos(wt — k)

and & = 0, n27, n = £1,£2, ... describes the wave crests. From (1.86) it follows that the
crests pass our observer with speed @ = u k, where

u:% as for & = 0 we have l‘”:%t. (1.87)

Let our observer count the number of wave crests passing by. How has the wave (1.81) to
be described in another inertial frame K’? An observer in K’ counting the number of wave
crests, passing through the same space-time point at which our first observer counts, must get
the same number. After all, the coordinates are just labels and the physics is the same in all
systems. When in frame K the wave takes its maximum at the space-time point (z%) it must
also be at its maximum in K’ at the same space-time point in appropriately transformed
coordinates ('®). More generally, this holds for every value of the phase, because it is a
scalar.
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As (k%) is a 4-vector the transformation law for angular frequency and wave vector is
just a special case of equations (1.74), (1.75) and (1.76)

K'° = kO cosh(¢) — Kkl sinh(¢) = ~v(k° — gkl (1.88)
K= —E%sinh(¢) + El cosh(¢) = y(kI — pE?), (1.89)
L=kt (1.90)

where the notation kll and k' is with respect to the relative velocity of the two frames, ¥.
These transformation equations for the frequency and the wave vector describe the relativistic
Doppler effect. To illustrate their meaning, let us specialize to the case of a light source,
which is emitted in K and the observer K’ moves in wave vector direction away from the
source, i.e., U || k. The equation for the wave speed (1.87) implies

= k:|l¥|:%=k°

CcC =

=&

and chosing directions so that &'l = & holds, (1.88) becomes

/0 __ 0 __ o . 0 _ 1.0 ﬂ
P =~y (k"= Pk) =71 =p)k" =k 155

, v 1-8 v [1-0
YT YVixs T ar V148

Now, ¢ = vA = V), where A is the wavelength in K and )\ the wavelength in K.

p_y |1t 8
A=A -3

For a receeding observer, or source receeding from the observer, 5 > 0 in our conventions for

or

Consequently, we have

K and K’, and the wave length )\’ is larger than it is for a source at rest. This is an example
of the red-shift, which is, for instance, of major importance when one analyzes spectral lines
in astrophysics. Using the method of section 1, a single light signal suffices now to obtain
position and speed of a distant mirror.

1.1.9 Relativistic dynamics

This section deals with the relativistic generalization of energy, momentum and their
conservation laws. So far we have introduced two units, meter to measure distances and
seconds to measure time. Both are related through a fundamental constant, the speed of
light, so that there is really only one independent unit up to now. In the definition of the
momentum a new, independent dimensional quantity enters, the mass of a particle. This
unit is defined through the gravitational law, which is out of the scope of this article. Ideally,
one would like to define the mass of a body as multiples of the mass of an elementary particle,
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say an electron or proton. This has remained too inaccurate. The mass unit has resisted
modernization and the mass unit

1 kilogram [kg] = 1000 gram [g]

is still defined through a one kilogram standard object, a cylinder of platinum alloy which
is kept at the International Bureau of Weights and Measures at Sévres, France.

Let us consider a point-like particle in its rest-frame and denote its mass there by my.
In any other frame the rest-mass of the particle is still mg, which in this way is defined
as a scalar. It may be noted that most books in particle and nuclear physics simply use
m to denote the rest-mass, whereas some books on special relativity employ the notation
m = ymg for a mass which is proportional to the energy, i.e. the zero component of the
energy-momentum vector introduced below. To avoid confusion, we use m for the rest mass.

In the non-relativistic limit the momentum is defined by p = mgu. We want to define
p as part of a relativistic 4-vector (p®). Consider a particle at rest in frame K, i.e., 7= 0.
Assume now that frame K’ is moving with a small velocity ¢ with respect to K. Then the
non-relativistic limit is correct, and p’ = —mgv has to hold approximately. On the other
hand, the transformation laws (1.74), (1.75) and (1.76) for vectors (note || § = #/¢) imply

’

7= 6°).

For =0 we find 5’ = —v E p°. As in the nonrelativstic limit v 3 — (3, consistency requires
p° = c¢myg in the rest frame, so that we get j = —mgy~yv. Consequently, for a particle
moving with velocity @ in frame K

p=moyu (1.91)

is the relation between relativistic momentum and velocity. Due to the invariance of the
scalar product p,p® = (p°)? — p? = p.p* = mic* holds and

p’ = +y/2mg +p2 (1.92)

follows, which is of course consistent with calculating p® via the Lorentz transformation law
(1.74). As cp® has the dimension of energy, the relativistic energy of a particle is

=2

E:cpo:+\/c4m%+c2ﬁ2:czmo+p—+..., (1.93)

2m0

where the second term is just the non-relativistic kinetic energy T' = p'2?/(2mg). The first
term shows that (rest) mass and energy can be transformed into one another [3]. In processes
where the mass is conserved we just do not notice it. Using the mass definition of special
relativity books like [7], m = cp°, together with (1.93) we obtain at this point the famous
equation E = mc?. Avoiding this definition of m, because it is not the mass found in particle
tables, where the mass of a particle is an invariant scalar, the essence of Einstein’s equation
is captured by
Ey=mgc?,



CHAPTER 1. 21

where Fjy is the energy of a massive body (or particle) in its rest frame. The particle and
nuclear physics literature does not use a subscript o and denotes the rest mass simply by m.

Non-relativistic momentum conservation pj + p» = ¢i + G2, where p;, (i = 1,2) are the
momenta of two incoming, and ¢, (i = 1,2) are the momenta of two outgoing particles,
becomes relativistic energy—momentum conservation:

pr Dy =qf + 45 (1.94)

Useful formulas in relativistic dynamics are

E
Y= Po _ > and f= @, (1.95)
mocC mocC
Further, the contravariant generalization of the velocity vector is given by
dx®
U*=—— =~u* with v’ = 1.96
o = with «” =c, (1.96)

compare the definition of the infinitesimal proper time (1.36). The relativistic generalization
of the force is then the 4-vector
dp® dUu«

@ = = 1.
/ dr o dr ’ (1.97)

where the last equality can only be used for particle with non-zero rest mass.

1.2 Maxwell Equations

As before all considerations are in vacuum, as for fields in a medium a preferred reference
system exists. Maxwell’s equations in their standard form in vacuum are

VE =drp, VXxB—-"—=>"1], (1.98)

and

VB=0, VxE+ 0. (1.99)

c Ot
Here V is the Nabla operator. Note that VE=V- E, ab=a-b etc. throughout the script.
E is the electric field and B the magnetic field in vacuum. When matter gets involved one
introduces the applied electric field D and the applied magnetic field H. Here we follow the
convention of, for instance, Tipler [8] and use the notation magnetic field for the measured
field g, in precisely the same way as it is done for the electric field E, It should be noted
that this is at odds with the notation in the book by Jackson [5], where (historically correct,
but quite confusingly) H is called magnetic field and B magnetic flux or magnetic induction.

Equations (1.98) are the inhomogeneous and equations (1.99) are the homogeneous
Maxwell equations in vacuum.
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The charge density p (charge per unit volume) and the current density J (charge passing
through a unit area per time unit) are obviously given once a charge unit is defined through
some measurement prescription. From a theoretical point of view the electrical charge unit
is best defined by the magnitude of the charge of a single electron (fundamental charge unit).
In more conventional units this reads

|ge| = 4.80320420(19) x 1071 [esu] = 1.602176462(63) x 107 Coulomd [C] ~ (1.100)

where the errors are given in parenthesis. Definitions of the through measurement prescrip-
tions rely presently on the current unit Ampére [A] and are given in elementary physics
textbooks like [8]. The numbers of (1.100) are from 1998 [1]. The website of the National
Institute of Standards and Technology (NIST) is given in this reference. Consult it for up
to date information.

The choice of constants in the inhomogeneous Maxwell equations defines units for the
electric and magnetic field. The given conventions 47p and (47/ c)f are customarily used in
connection with Gaussian units, where the charge is defined in electrostatic units (esu).

In the next subsections the concepts of fields and currents are discussed in the relativistic
context and the electromagnetic field equations follow in the last subsection.

1.2.1 Fields and currents

A tensor field is just a tensor function which depends on the coordinates of Minkowski space:

It is called static when there is no time dependence. For instance E (Z) in electrostatics would
be a static vector field in three dimensions. We are here, of course, primarily interested in
contravariant or covariant fields in four dimensions, like vector fields A%(x).

Suppose n electric charge units are contained it a small volume v, such that we can talk
about the position & of this volume. The corresponding electrical charge density at the
position of that volume is then just p = n/v and the electrical current is defined as the
charge that passes per unit time through a surface element of such a volume. We demand
now that the electric charge density p and the electric current J form a 4-vector:

= (%)

Here, the factor ¢ is introduced by dimensional reasons and we have suppressed the space-
time dependence, i.e. J* = J%(x) forms a vector field. It is left as a problem to write down
the 4-current for a point particle of elementary charge q..

The continuity equation takes the simple, covariant form

0aJ*=0. (1.101)
Finally, the charge of a point particle in its rest frame is an invariant:

g = JuJ.
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1.2.2 The inhomogeneous Maxwell equations

The inhomogeneous Maxwell equations are obtained by writing down the simplest covariant
equation which yields a 4-vector as first order derivatives of six fields. From undergraduate
E&M we remember the electric and magnetic fields, E and B , as the six central fields of
electrodynamics. We now like to describe them in covariant form. A 4-vector is unsuitable
as we like to describe six quantities E*, EY, E* and B”, BY, B*. Next, we may try a rank
two tensor F*3. Then we have 4 x 4 = 16 quantities at our disposal. These are now
too many. But, one may observe that an symmetric tensor stays symmetric under Lorentz
transformation and an antisymmetric tensor stays antisymmetric. Hence, instead of looking
at the full second rank tensor one has to consider its symmetric and antisymmetric parts
separately.
By requesting F*? to be antisymmetric,

FoP = —pPe (1.102)
this number is reduced to precisely six. The diagonal elements do now vanish,
FOO — Fll — F22 — F33 =0.

The other elements follow through (1.102) from F*® with o < 3. As desired, this gives
(16 — 4)/2 = 6 independent elements to start with.

Up to an over-all factor, which is chosen by convention, the only way to obtain a 4-vector
through differentiation of F*# is

OuFP = = J° . (1.103)

c
This is the inhomogeneous Maxwell equation in covariant form. Note that it determines
the physical dimensions of the electric fields, the factor ¢ '47 on the right-hand side
corresponds to Gaussian units. The continuity equation (1.101) is a simple consequence
of the inhomogeneous Maxwell equation

4
0507 = 050, = 0

because the contraction with the symmetric tensor (930,) with the antisymmetric tensor
F°8 is zero.

Let us choose = 0,1,2,3 and compare equation (1.103) with the inhomogeneous
Maxwell equations in their standard form (1.98). For instance, 9,F*° = VE = 4r p yields
the F0 = E’, the first column of the F*# tensor. The final result is

0 —E* —EY —F*
E* 0 —-B* BY
EY B* 0 -—B°
E* —BY B* 0

(FoP) = (1.104)
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Or, in components

FP?=FE" and F7=-Y /"B« B* = -5 SN FEY (1.105)
k i j

Next, Fop = garygps F?° implies:
Foi=—F" Fpo=F"=0, F; =F"=0, and F;=F".

Consequently,
0 E* EY FE*
-FE* 0 -—-B* BY
(Faﬁ) = _Ey Bz 0 _B:v
—FE* —-BY B® 0

(1.106)

1.2.3 Four-potential and homogeneous Maxwell equations

We remember that the electromagnetic fields may be written as derivatives of appropriate
potentials. The only covariant option are terms like 9*A”. To make F'*? antisymmetric, we
have to subtract 9% A%:

PP =0"AP — 9P A, (1.107)

It is amazing to note that the homogeneous Maxwell equations follow now for free. The dual
electromagnetic tensor is defined

1
Fped = EEQWFW (1.108)

and it holds
9, F*" = 0. (1.109)
Proof: 1
O FP = 5 (e71°0,0, A5 — €7°0,05A,) = 0.

This first term is zero due to (1.49), because €77 is antisymmetric in («, ), whereas the
derivative 0,0, is symmetric in (o, ). Similarly the other term is zero. The homogeneous
Maxwell equation is related to the fact that the right-hand side of equation (1.107) expresses
six fields in terms of a single 4-vector. An equivalent way to write it is the equation

OFP 4 0P - O FP =0 . (1.110)

The proof is left as an exercise to the reader.
Let us mention that the homogeneous Maxwell equation (1.109) or (1.110), and hence
our demand that the field can be written in the form (1.107), excludes magnetic monopoles.
The elements of the dual tensor may be calculated from their definition (1.108). For

example,
FpO2_ 02Bp . . _BY

Y
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where the first step exploits the anti-symmetries €923! = —¢%213 and F3; = —F}3. Calculating
six components, and exploiting antisymmetry of *F**, we arrive at

0 —-B* —-BY -—-B*

B* 0 £ —EY
BY L7 0 E*
B EY —FE¥ 0

(*FP) = (1.111)

The homogeneous Maxwell equations in their form (1.99) provide a non—trivial consistency
check for (1.109), which is of course passed. It may be noted that, in contrast to the
inhomogeneous equations, the homogeneous equations determine the relations with the E
and B fields only up to an over-all + sign, because there is no current on the right-hand
side.
A notable observation is that equation (1.107) does not determine the potential uniquely.
Under the transformation
A% A" = A% + 0%, (1.112)

where ¢ = 1(x) is an arbitrary scalar function, the electromagnetic field tensor is invariant:
F'o? = P8 as follows immediately from 0%0%y — 9°9%) = 0. The transformations (1.112)
are called gauge transformation'. The choice of a convenient gauge is at the heart of many
application.

1.2.4 Lorentz transformation for the electric and magnetic fields

The electric E and magnetic B fields are not components of a Lorentz four-vector, but part
of the rank two the electromagnetic field (F*?) given by (1.104). As for any Lorentz tensor,
we immediately know its behavior under Lorentz transformation

F°P = ds P (1.113)

Using the explicit form (1.70) of A = (a®) for boosts in the x' direction and (1.104) for the

relation to E and B fields, it is left as an exercise for the reader to derive the transformation

laws )
E/—V(E+5x§)—7115(55) , (1.114)

and )
E’:y(é—ﬁxﬁ)—ﬂﬂﬁ(ﬁé) . (1.115)

In quantum field theory these are the gauge transformations of 2. kind. Gauge transformations of 1. kind
transform fields by a constant phase, whereas for gauge transformation of the 2. kind a space-time dependent
function is encountered.
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1.2.5 Lorentz force

Relativistic dynamics of a point particle (more generally any mass distribution) gets related
to the theory of electromagnetic fields, because an electromagnetic field causes a change of
the 4-momentum of a charged particle. On a deeper level this phenomenon is related to the
conservation of energy and momentum and the fact that an electromagnetic carries energy as
well as momentum. Here we are content with finding the Lorentz covariant form, assuming
we know already that such the approximate relationship.

We consider a charged point particle in an electromagnetic field F*?. Here external
means from sources other than the point particle itself and that the influence of the point
particle on these other sources (possibly causing a change of the field F*?) is neglected. The
infinitesimal change of the 4-momentum of a point point particle is dp® and assumed to be
proportional to (i) its charge ¢ and (ii) the external electromagnetic field F*®. This means,
we have to contract F'*? with some infinitesimal covariant vector to get dp®. The simplest
choice is dxz, what means that the amount of 4-momentum change is proportional to the
space-time length at which the particle experiences the electromagnetic field. Hence, we
have determined dp® up to a proportionality constant, which depends on the choice of units.
Gaussian units are defined by choosing ¢! for this proportionality constant and we have

dp® = £ 7P dy,. (1.116)
&

As discussed in the next section, it is a consequence of energy conservation, in this context
known as Lenz’s law, that the force between charges of equal sign has to be repulsive. This
corresponds to the plus sign and we arrive at

dp™ = L FoB dyg,. (1.117)
C

Experimental measurements are of course in agreement with this sign. The remarkable point
is that energy conservation and the general structure of the theory already imply that the
force between charges of equal sign has to be repulsive. Therefore, despite the similarity of
the Coulomb’s inverse square force law with Newton’s law it impossible to build a theory
of gravity along the lines of this chapter, i.e. to use the 4-momentum p® as source in
the inhomogeneous equation (1.103). The resulting force would necessarily be repulsive.
Experiments show also that positive and negative electric charges exist and deeper insight
about their origin comes from the relativistic Lagrange formulation, which ultimately has to
include Dirac’s equation for electrons and leads then to Quantum Electrodynamics.

Taking the derivative with respect to the proper time, we obtain the 4-force acting on a
charged particle, called Lorentz force,
dp®
dr
As in equation (1.97) f* = modU®/dr holds for non-zero rest mass and the definition of the
contravariant velocity is given by equation (1.96).

o= = %FﬂﬂUﬁ. (1.118)
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Using the representation (1.104) of the electromagnetic field the time component of the
relativistic Lorentz force, which describes the change in energy, is

oo (E0) . (1.119)

To get the space component of the Lorentz force we use besides (1.104) equation (1.105)
which give the equality

R I - ik ok
EZF”U]- = _EZZ ¢*B*U
7=1 7=1k=1
The space components combine into the well-known equation
F=gvE+%0x B (1.120)
c

where our derivation reveals that the relativistic velocity (1.96) of the charge ¢ and not its
velocity ¢ enters the force equation. This allows, for instance, correct force calculations for
fast flying electrons in a magnetic field. The equation (1.120) for f may now be used to
define a measurement prescription for an electric charge unit.

1.3 Faraday’s Law

From the homogeneous Maxwell equations (1.109) we have

VxE+1aalf_0. (1.121)

This equation is the differential form of Faraday’s law: A changing magnetic field induces
an electric field. In the following we derive the integral form, which is needed for circuits
of macroscopic extensions. We integrate over a simply connected surface S and use Stoke’s

theorem to convert the integral over V x E into a closed line integral along the boundary C
of S:

(VXE)-di=¢ E-dl=—= a—Bda
J 2 i

On the right-hand side we eliminate the partial derlvatlve 8 /Ot using

- 3 i
4 _ af—i-v \Y (note U:&E:Zéiax>

dat ot

to get
fﬁ-di —f—/B da + - /v V) B - da (1.122)
C

Using the other homogeneous Maxwell equation, V - B = 0, and that the 9/0x" derivatives
of ¥ vanish (e.g., (0/0x') (9z'/0t) = (0/0t) (0x' /dz1) = 0), the well-known vector identity

—

[V x (@xb)]

(V-b)a+(b-V)i—(V-a)b—(a-V)b,
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gives
Vx (Bx#)=0(V-B)+(@-V)B=(-V)B
and we transform the last integral in (1.122) as follows:
1 . = 1 L = .
—/(v-V)B-da - —*/VX (7x B)-di =
clJs cls

_ifc(ﬁxé)-df - —fc(ﬁxé)-df

where Stoke’s theorem has been used and § = #/c. We re-write equation (1.122) with both
encountered line integral on the left-hand side

— — — g 1 d
E B)-dl=——9® 1.12
f(E+FxB)-di= —Za, (1.123)
where @ is called magnetic flux and defined by
@m:/é.da. (1.124)
s

Equation (1.123) is the fully relativistic version of Faraday’s law. The velocity 5 = U/c in
equation (1.123) refers to the velocity of the line element dl with respect to the inertial frame
in which the calculation is done. In the frame co-moving with apparatus, normally the Lab
frame, the velocity differences between different line element sections are small so that we
can neglect the 5 x B contribution:

1d

-——d,, 1.12
cdt ( 5)

Eemf:% Edf:—
c

where €qys is called electromotive force (emf). In this approximation Faraday’s Law of
Induction is found in most test books. Due to our initial treatment of special relativity
we do not face the problem to work out its relativistic generalization, but instead obtained
(1.125) as an approximation of the generally correct law (1.123).

1.3.1 Lenz’s law

With the Lorentz force (1.118) given, Energy conservation determines the minus sign on the
right-hand side of Faraday’s law (1.125). This is known as Lenz’s law. For closed, conducting
circuits the emf (1.125) will induce a current, whose magnitude depends on the resistance of
the circuit. Lenz’s law states: The induced emf and induced current are in such a direction
as to oppose the change that produces them. [8] gives many examples. To illustrate the
connection with energy conservation, we discuss one of them.

We consider a permanent bar magnet moving towards a closed loop that has a resistance
R. The north pole of the bar magnet is defined so that the magnetic field points out of
it. We arrange the north—south axis of the magnet perpendicular to the surface spanned
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by the loop and move the magnet toward the loop. The magnet’s magnetic field through
the loop get stronger when the magnet is approaching and a current is induced in the loop.
The direction of the current is such that its magnetic field is opposite to that of the magnet,
effectively the loop becomes a magnet with north pole towards the bar magnet. The result
is a repulsive force between bar magnet and loop. Work against this force is responsible for
the induced current, and its associated heat, in the loop. Would the sign of the induced
current be different an attractive force would result and the resulting acceleration of the bar
magnet as well as the heat in the loop would violate energy conservation. Note that pulling
the bar magnet out of the loop does also produce energy.

In our treatment the sign of Faraday’s law is already given by the electromagnetic field
equation and energy conservation determines the sign in equation (1.116) for the Lorenz
force.
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