ADVANCED DYNAMICS — PHY 4241/5227
HOME AND CLASS WORK - SET 7

Solution for assignment 10c: Double pendulum eigenvectors and explicit orbits.
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witha, = —2—2v/2, b, = —2—v/2, ¢, = —1—v2and a_ = —242v/2,b. = —2+/2,

c_ = —1 ++/2. With the ansatz given in the problem we find:
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and, therefore, the eigenvectors
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They are not orthogonal, because the previously solved eigenvalue problem is of the
form
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Multiplying with 7= from the left does not help, because the matrix 7=V will not be
symmetric. Instead a generalization of the usual orthogonality definition works, see
M&T (12.55) or Goldstein Mechanics. The general solution for the double pendulum
problem is given by the real part of our ansatz, which can be written
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The four constants are determined by the four initial value, e.g., ¢y, gﬁo, Yo, z/}o at
time t = 0:
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¢p = wiBi+w B, 1y = V2 (-wi,B,+w B),

which gives
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and the time dependence of the angles is
o(t) = +A;coswit+ Bysinw,t+ A cosw_t+ B_sinw_t,
() = (—Aycoswyt— Bysinwyt + A_cosw_t+ B_sinw_t) V2.
For the initial conditions
do=0, ¢o=1, =0, dh=-1
at time t = 0 see the figure for a plot up to t = 50 \/% (next page).
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