INTERMEDIATE MECHANICS II - PHY 4936
 HOME AND CLASS WORK - SET 3

(September 16, 2011)
(10) Verify the solution of Problem 3 (a), p. 11 of Landau-Lifschitz along the following steps: Calculate as function of the generalized coordinate ϕ
$10.1 \dot{x}$ and \dot{y}.
$10.2 \dot{x}^{2}$ and \dot{y}^{2}.
10.3 Eliminate the term with $\dot{\phi} \sin (\phi-\gamma t)$ from L.

Due Friday, September 16 before class (10 points).
(11a) Calculate explicitly
$\delta_{x} L$ for the Lagrangian of two harmonically bound particles in 1D

$$
L=\frac{m_{1}}{2}\left(\dot{x}_{1}\right)^{2}+\frac{m_{2}}{2}\left(\dot{x}_{2}\right)^{2}-k\left(x_{1}-x_{2}\right)^{2} .
$$

Is there a conservation law? Due in class (2 points).
(11b) Repeat the previous excercise for the harmonic ocillator in 1D

$$
L=\frac{m_{1}}{2}(\dot{x})^{2}-\frac{k}{2} x^{2} .
$$

Due in class (2 points).
(12a) Use the Einstein summation convention in the following. Show that

$$
L_{i}=\epsilon_{i j k} x_{j} p_{k}=[\vec{r} \times \vec{p}]_{i} \text { holds for } i=1,2,3
$$

Due in class (2 points).
(12b) Express $\epsilon_{12 k} \epsilon_{l m k}$ in terms of Kronecker delta and then $\epsilon_{i j k} \epsilon_{l m k}$. Due in class (2 points).
(13) Derive the answers of problems 1 and 2, Landau-Lifschitz, p.21. Due Monday, September 26 before class (10 points).
(14) Derive the solutions of problems 1 and 2, Landau-Lifshitz p. 24 Due Friday, September 30 (6 points).
(15) Compute the solution for the equation of motion

$$
m \ddot{x}=\frac{k}{x^{3}}, \quad k>0
$$

with $t=0$ initial values $x_{0}>0$ and $\dot{x}_{0}=0$. Due Monday, October 3 before class (10 points).

