ADVANCED DYNAMICS - PHY 4934
 HOME AND CLASS WORK - SET 4

(October 1, 2011)

	Masses		Initial Positions			Initial Velocities		
$\#$	i	m_{i}	$x_{i, 0}^{1}$	$x_{i, 0}^{2}$	$x_{i, 0}^{3}$	$\dot{x}_{i, 0}^{1}$	$\dot{x}_{i, 0}^{2}$	$\dot{x}_{i, 0}^{3}$
1	1	0.651	0.585	-0.238	-0.755	-0.828	-0.865	-0.726
	2	0.931	-0.096	0.000	0.357	-0.209	0.107	-0.660
2	1	1.510	0.460	-0.359	-0.234	-0.918	-0.941	-0.323
	2	0.126	-0.066	-0.090	-0.809	0.789	0.788	0.620
3	1	1.328	-0.125	0.898	0.194	-0.452	0.172	0.125
	2	1.999	-0.449	-0.085	-0.454	-0.976	-0.990	-0.968
4	1	0.180	0.204	-0.968	-0.753	-0.811	-0.632	0.784
	2	1.560	-0.889	-0.979	0.854	-0.323	-0.774	-0.533

Table 1: Initial conditions for the Kepler problem (arbitrary units and set $G=1$).
(16) Calculate the angular momentum vectors in the CM frame for the initial conditions given in the table above (you can download the data as text file Kepler.txt). Due October 5 before class 8 points.

Do not forget: Midterm Friday, October 7.

(17) Let the interaction of two point particles be described by a potential which depends only on their distance:

$$
\mathcal{L}=\frac{m_{1}}{2} \vec{v}_{1}^{2}+\frac{m_{2}}{2} \vec{v}_{2}^{2}-U(r), \quad r=|\vec{r}|, \quad \vec{r}=\vec{r}_{1}-\vec{r}_{2} .
$$

1. Is the energy of this system conserved (with reason) (1 point)?
2. Define the center of mass vector by $\vec{R}=\left(m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}\right) / M, M=m_{1}+m_{2}$ and express $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ through \vec{R} and \vec{r} (2 points).

The center of mass (cm) frame is defined by $\vec{R}(t)=0$. Show the following equalities in the cm system:
3. $T_{\mathrm{cm}}=m_{1} \vec{v}_{1}^{2} / 2+m_{2} \vec{v}_{2}^{2} / 2=\mu \vec{v}^{2} / 2$ with $\vec{v}=\dot{\vec{r}}$ and μ the reduced mass. Express μ through m_{1}, m_{2} and M (2 points).
4. $\vec{L}=\vec{r}_{1} \times \vec{p}_{1}+\vec{r}_{2} \times \vec{p}_{2}=\mu \vec{r} \times \vec{v}$ (2 points).

Due in class.
(18) Plot the effective potentials corresponding to the initial conditions of the table together with the energies in the CM frames (the Potential is $U(r)=$ $\left.-G m_{1} m_{2} / r\right)$. Due October 14 before class 8 points.

