ADVANCED DYNAMICS — PHY 4934 HOME AND CLASS WORK – SET 4

	Masses		Initial Positions			Initial Velocities		
#	i	m_i	$x_{i,0}^1$	$x_{i,0}^2$	$x_{i,0}^3$	$\dot{x}_{i,0}^{1}$	$\dot{x}_{i,0}^{2}$	$\dot{x}_{i,0}^{3}$
1	1	0.651	0.585	-0.238	-0.755	-0.828	-0.865	-0.726
	2	0.931	-0.096	0.000	0.357	-0.209	0.107	-0.660
2	1	1.510	0.460	-0.359	-0.234	-0.918	-0.941	-0.323
	2	0.126	-0.066	-0.090	-0.809	0.789	0.788	0.620
3	1	1.328	-0.125	0.898	0.194	-0.452	0.172	0.125
	2	1.999	-0.449	-0.085	-0.454	-0.976	-0.990	-0.968
4	1	0.180	0.204	-0.968	-0.753	-0.811	-0.632	0.784
	2	1.560	-0.889	-0.979	0.854	-0.323	-0.774	-0.533

(October 1, 2011)

Table 1: Initial conditions for the Kepler problem (arbitrary units and set G = 1).

(16) Calculate the angular momentum vectors in the CM frame for the initial conditions given in the table above (you can download the data as text file Kepler.txt). Due October 5 before class 8 points.

Do not forget: Midterm Friday, October 7.

(17) Let the interaction of two point particles be described by a potential which depends only on their distance:

$$\mathcal{L} = \frac{m_1}{2}\vec{v}_1^2 + \frac{m_2}{2}\vec{v}_2^2 - U(r), \quad r = |\vec{r}|, \ \vec{r} = \vec{r}_1 - \vec{r}_2.$$

- 1. Is the energy of this system conserved (with reason) (1 point)?
- 2. Define the center of mass vector by $\vec{R} = (m_1 \vec{r_1} + m_2 \vec{r_2})/M$, $M = m_1 + m_2$ and express $\vec{r_1}$ and $\vec{r_2}$ through \vec{R} and \vec{r} (2 points).

The center of mass (cm) frame is defined by $\vec{R}(t) = 0$. Show the following equalities in the cm system:

3. $T_{\rm cm} = m_1 \vec{v}_1^2/2 + m_2 \vec{v}_2^2/2 = \mu \vec{v}^2/2$ with $\vec{v} = \dot{\vec{r}}$ and μ the reduced mass. Express μ through m_1 , m_2 and M (2 points).

4.
$$\vec{L} = \vec{r_1} \times \vec{p_1} + \vec{r_2} \times \vec{p_2} = \mu \vec{r} \times \vec{v}$$
 (2 points).

Due in class.

(18) Plot the effective potentials corresponding to the initial conditions of the table together with the energies in the CM frames (the Potential is $U(r) = -G m_1 m_2/r$). Due October 14 before class 8 points.