ADVANCED DYNAMICS - PHY 4936
 HOME AND CLASS WORK - SET 6

(November 1, 2011)
Read Landau-Lifshitz p. 58 up to p. 72 (§21 to §24).
(26) Continue with the double pendulum from assignment 25 .

1. Use the eigenfrequencies $\omega_{ \pm}$given in the posted solution of 25 and normal coordinates (Landau-Lifshitz p.67/8) to write down the general solution for the two angles.
2. Express the integration constants of your solution through the angular positions and velocities at time $t=0$, denoted by $\phi_{0}, \dot{\phi}_{0}, \psi_{0}, \dot{\psi}_{0}$.
3. Use $\sqrt{l / g}$ as time unit and plot the solutions $\phi(t)$ and $\psi(t)$ up to $t=$ $50 \sqrt{l / g}$ for initial conditions $\phi_{0}=0, \dot{\phi}_{0}=\sqrt{g / l}, \psi_{0}=0, \dot{\psi}_{0}=-\sqrt{g / l}$.

Due November 7 before class (10 points).
(27) (A) Calculate the eigenfrequencies of a 2D harmonic oscillator

$$
\left(\sum_{k=1}^{2} m_{i k} \ddot{x}_{k}+k_{i k} x_{k}\right)=0, \quad(i=1,2)
$$

with matrix elements

$$
M=\left(m_{i k}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \text { and } K=\left(k_{i k}\right)=\left(\begin{array}{ll}
5 & 1 \\
1 & 2
\end{array}\right) .
$$

Due in class (4 points).
(B) Use normal co-ordinates Θ_{1} and Θ_{2} as defined in Landau-Lifshitz (p.67/68). Express x_{1} and x_{2} in terms of them. Due in class (4 points).
(C) Use the given numbers for $m_{i k}$ and $k_{i k}$ and write down the Lagrangian as function of $\dot{x}_{1}, \dot{x}_{2}, x_{1}$ and x_{2}. Then, substitute normal co-ordinates as found in (B) and write down the Lagrangian in terms of $\dot{\Theta}_{1}, \dot{\Theta}_{2}, \Theta_{1}$ and Θ_{2}. Due November 7 before class (6 points).
(D) Assume at time $t=0$ the initial conditions $\Theta_{1}(0)=1, \dot{\Theta}_{1}(0)=0, \Theta_{2}(0)=0$ and $\dot{\Theta}_{2}(0)=1$. Plot the resulting solution first in in the $\Theta_{1}-\Theta_{2}$ plane and then in the $x_{1}-x_{2}$ plane. Due November 9 before class (4 points).
(28) The Lagrangian of a 2D oscillator is

$$
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}-\omega_{1}^{2} x^{2}-\omega_{2}^{2} y^{2}\right) .
$$

Write down the general solution for the case that $x=y=0$ at $t=0$. Which condition applies to ω_{1} and ω_{2}, so that the mass point returns to $x=y=0$ at some future time t ? How long will it take? Due November 14 before class (4 points).
Read Landau-Lifshitz p. 96 up to p. 101 (§31 and §32).

