ADVANCED DYNAMICS — PHY 4936 HOME AND CLASS WORK – SET 6

(November 1, 2011)

Read Landau-Lifshitz p.58 up to p.72 ($\S21$ to $\S24$).

(26) Continue with the double pendulum from assignment 25.

- 1. Use the eigenfrequencies ω_{\pm} given in the posted solution of 25 and normal coordinates (Landau-Lifshitz p.67/8) to write down the general solution for the two angles.
- 2. Express the integration constants of your solution through the angular positions and velocities at time t = 0, denoted by ϕ_0 , $\dot{\phi}_0$, ψ_0 , $\dot{\psi}_0$.
- 3. Use $\sqrt{l/g}$ as time unit and plot the solutions $\phi(t)$ and $\psi(t)$ up to $t = 50\sqrt{l/g}$ for initial conditions $\phi_0 = 0$, $\dot{\phi}_0 = \sqrt{g/l}$, $\psi_0 = 0$, $\dot{\psi}_0 = -\sqrt{g/l}$.

Due November 7 before class (10 points).

(27) (A) Calculate the eigenfrequencies of a 2D harmonic oscillator

$$\left(\sum_{k=1}^{2} m_{ik} \ddot{x}_k + k_{ik} x_k\right) = 0, \quad (i = 1, 2)$$

with matrix elements

$$M = (m_{ik}) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 and $K = (k_{ik}) = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$.

Due in class (4 points).

(B) Use normal co-ordinates Θ_1 and Θ_2 as defined in Landau-Lifshitz (p.67/68). Express x_1 and x_2 in terms of them. Due in class (4 points).

(C) Use the given numbers for m_{ik} and k_{ik} and write down the Lagrangian as function of \dot{x}_1 , \dot{x}_2 , x_1 and x_2 . Then, substitute normal co-ordinates as found in (B) and write down the Lagrangian in terms of $\dot{\Theta}_1$, $\dot{\Theta}_2$, Θ_1 and Θ_2 . Due November 7 before class (6 points).

(D) Assume at time t = 0 the initial conditions $\Theta_1(0) = 1$, $\dot{\Theta}_1(0) = 0$, $\Theta_2(0) = 0$ and $\dot{\Theta}_2(0) = 1$. Plot the resulting solution first in the Θ_1 - Θ_2 plane and then in the x_1 - x_2 plane. Due November 9 before class (4 points).

(28) The Lagrangian of a 2D oscillator is

$$L = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 - \omega_1^2 x^2 - \omega_2^2 y^2 \right) .$$

Write down the general solution for the case that x = y = 0 at t = 0. Which condition applies to ω_1 and ω_2 , so that the mass point returns to x = y = 0 at some future time t? How long will it take? Due November 14 before class (4 points).

Read Landau-Lifshitz p.96 up to p.101 (§31 and §32).