PHY 4936 HOME AND CLASS WORK - SET 7

(November 11, 2011)
Read Landau-Lifshitz p. 96 up to p. 101 (§31 and §32).
(29) Consider a thin disk composed of two homogeneous halves connected along a diameter of the disk. If one half has density ρ and the other has density 2ρ, find the expression for the Lagrangian when the disk rolls without slipping along a horizontal surface as shown in the figure (the rotation takes place in the plane of the disk). Due November 18 before class (10 points).

(30) A. Calculate $\vec{a} \times(\vec{b} \times \vec{c})$ as superposition of two of its vectors using

$$
[\vec{a} \times(\vec{b} \times \vec{c})]_{i}=\epsilon_{i j k} \epsilon_{k l m} a_{j} b_{l} c_{m} .
$$

Due in class (3 points). B. Does the expression $\vec{a} \times \vec{b} \times \vec{c}$ make sense? Yes or No with reason. Due in class (1 point).
(31) The total, conserved energy of a system is given by

$$
E=\frac{1}{2} M R^{2} \dot{\theta}^{2}\left[\frac{3}{2}-\frac{8}{9 \pi} \cos \theta\right]+M g R\left[1-\frac{4}{9 \pi} \cos \theta\right] .
$$

Consider the following energies:

$$
\text { (A.) } E=M g R, \quad \text { (B.) } E=M g R\left(1-\frac{4}{9 \pi \sqrt{2}}\right) .
$$

Are there turning points? If yes, give their θ values. Due November 21 before class (4 points).

Read Landau-Lifshitz p. 105 up to p. 111 (§33 and §35).

