Intermediate Mechanics II — PHY 4936 Midterm Exam October 7, 2011

PROBLEM 1 (33 points)

The potential of the 1D harmonic oscillator is $U(x) = k x^2/2$.

- 1. Write down the Lagrangian.
- 2. Write down the Euler-Lagrange equation.
- 3. Solve the Euler-Lagrange equation. Express integration constants through time zero initial conditions x_0 and \dot{x}_0 .

PROBLEM 2 (34 points)

Consider a point mass m on the surface of a sphere of radius R under the influence of gravity $-g\hat{z}$ (spherical pendulum).

- 1. Write down the Lagrange function using spherical coordinates.
- 2. Identify the conservation laws.
- 3. Find the special solutions for $\theta = \text{constant}$. Describe this motion.

PROBLEM 3 (33 points)

Assume a Lagrangian $L = L(\{q_i\}, \{\dot{q}_i\}, t)$ where $q_i, i = 1, ..., n$ are generalized coordinates, $\dot{q}_i, i = 1, ..., n$ are generalized velocities and t is the time.

- 1. Write down the principle of least action.
- 2. Derive the Euler-Lagrange equations from the principle of least action.
- 3. Assume that the Lagrangian is invariant under translation $q_k \rightarrow q'_k = q_k + \epsilon_k$ of one or more generalized coordinates q_k . Find the corresponding conserved quantities.