SOLUTIONS MIDTERM PHY 4936 (Fall 2011)

PROBLEM 3

3.1 Principle of least action: Every mechanical system is characterized by a definite function $L=L\left(q_{1}, \ldots, q_{s}, \dot{q}_{1}, \ldots, \dot{q}_{s}, t\right)$ and the motion of the system is such that the system moves between two fixed positions at different times t_{1} and t_{2} in a way that for sufficiently short time differences the integral

$$
S=\int_{t_{1}}^{t_{2}} L d t
$$

takes the least possible value.
3.2 Deviation of the Euler-Lagrange equations from the least action principle in general coordinates $q_{i}, \dot{q}_{i}, i=1, \ldots s$:

$$
\begin{aligned}
0 & =\delta \int_{t_{1}}^{t_{2}} d t L\left(q_{i}, \dot{q}_{i}, t\right)=\int_{t_{1}}^{t_{2}} d t\left\{L\left(q_{i}+\delta q_{i}, \dot{q}_{i}+\delta \dot{q}_{i}, t\right)-L\left(q_{i}, \dot{q}_{i}, t\right)\right\} \\
& =\int_{t_{1}}^{t_{2}} d t\left\{L\left(q_{i}, \dot{q}_{i}, t\right)+\sum_{i} \frac{\partial L}{\partial q_{i}} \delta q_{i}+\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i}-L\left(q_{i}, \dot{q}_{i}, t\right)\right\} \\
& =\int_{t_{1}}^{t_{2}} d t\left\{\sum_{i} \frac{\partial L}{\partial q_{i}} \delta q_{i}+\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \frac{d}{d t} \delta q_{i}\right\} \\
& =\int_{t_{1}}^{t_{2}} d t \sum_{i}\left\{\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right\} \delta q_{i}+\left[\frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i}\right]_{t_{1}}^{t_{2}}=\int_{t_{1}}^{t_{2}} d t \sum_{i}\left\{\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right\} \delta q_{i} .
\end{aligned}
$$

The last equality holds because of $\delta q_{i}\left(t_{1}\right)=\delta q_{i}\left(t_{2}\right)=0$. As the variations are independent, the finally obtained relation is equivalent to

$$
\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=0 \text { for } i=1, \ldots, s
$$

3.3 $L\left(q_{k}+\epsilon_{k}, \dot{q}_{k}, t\right)=L\left(q_{k}, \dot{q}_{k}, t\right)$ implies

$$
0=\frac{\partial L}{\partial q_{k}}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{k}} \Rightarrow p_{k}=\frac{\partial L}{\partial \dot{q}_{k}} \text { conserved (generalized momentum). }
$$

