SOLUTIONS FINAL - PHY 4936 Fall 2011

PROBLEM 1

(1) The momentum is

$$
p=\frac{\partial L}{\partial \dot{x}}=m \dot{x}
$$

(2) Eliminating \dot{x} in favor of p we obtain the Hamiltonian

$$
H=T+V=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}
$$

(3) Hamilton's equations are

$$
\frac{\partial H}{\partial p}=\frac{p}{m}=\dot{x} \quad \text { and } \quad \frac{\partial H}{\partial x}=k x=-\dot{p}
$$

(4) Newton's force law follows

$$
k x=-\dot{p}=-m \ddot{x} \text { or } m \ddot{x}=-k x
$$

PROBLEM 2

We consider an infinitesimal rotation by an angle $\delta \vec{\phi}$ (Landau-Lifshitz, $\S 9$, p.18):

$$
\begin{equation*}
\delta \vec{r}_{j}=\delta \vec{\phi} \times \vec{r}_{j}, \quad \delta \dot{\vec{r}}_{j}=\delta \vec{\phi} \times \dot{\vec{r}}_{j} . \tag{1}
\end{equation*}
$$

For example, if this rotation is about the z axis $\left|\delta \vec{r}_{j}\right|=\left|\delta \phi r_{j} \sin (\theta)\right|$ holds. Let us denote the components of the rotations by δx_{j}^{i} and $\delta \dot{x}_{j}^{i}$, where $i=1,2,3$ labels the coordinates and $j=1, \ldots, n$ the particles. Assuming isotropy of space, the Lagrangian is invariant under an infinitesimal rotation

$$
0=\sum_{j}\left\{\sum_{i} \frac{\partial L}{\partial x_{j}^{i}} \delta x_{j}^{i}+\sum_{i} \frac{\partial L}{\partial \dot{x}_{j}^{i}} \delta \dot{x}_{j}^{i}\right\} .
$$

Using the definition of the generalized momentum and Euler-Lagrange equations, this reads

$$
0=\sum_{j}\left\{\sum_{i} \dot{p}_{j}^{i} \delta x_{j}^{i}+\sum_{i} p_{j}^{i} \delta \dot{x}_{j}^{i}\right\}=\sum_{j}\left\{\dot{\vec{p}}_{j} \cdot \delta \vec{r}_{j}+\vec{p}_{j} \cdot \delta \dot{\vec{r}}_{j}\right\} .
$$

Inserting (1)

$$
0=\sum_{j}\left\{\dot{\vec{p}}_{j} \cdot\left(\delta \vec{\phi} \times \vec{r}_{j}\right)+\vec{p}_{j} \cdot\left(\delta \vec{\phi} \times \dot{\vec{r}}_{j}\right)\right\}
$$

and we pull out the $\delta \vec{\phi}$, which is the same for all particles:

$$
\begin{gathered}
\left.0=\sum_{j}\left\{\delta \vec{\phi} \cdot\left(\vec{r}_{j} \times \dot{p}_{j}\right)\right)+\delta \vec{\phi} \cdot\left(\dot{\vec{r}}_{j} \times \vec{p}_{j}\right)\right\}=\delta \vec{\phi} \frac{d}{d t} \sum_{j}\left(\vec{r}_{j} \times \vec{p}_{j}\right) \\
\Leftrightarrow \sum_{j}\left(\vec{r}_{j} \times \vec{p}_{j}\right)=\vec{L}=\text { Constant } .
\end{gathered}
$$

PROBLEM 3: See Homework, Problem 19.

PROBLEM 4: Compare Homework, Problem 29.

1. Given a coordinate system $\left(x^{\prime}, y^{\prime}\right)$ which rotates with the disk, the location of the CM is $\bar{x}_{C M}=0$ and

$$
\begin{aligned}
\bar{y}_{C M} & =\frac{\rho}{M}\left\{\int_{0}^{R} d r r \int_{0}^{\pi} d \theta r \sin \theta+2 \int_{0}^{R} d r r \int_{\pi}^{2 \pi} d \theta r \sin \theta\right\} \\
& =\frac{\rho}{M}\left\{\frac{R^{3}}{3} 2-\frac{R^{3}}{3} 4\right\}=-\frac{2}{3} \frac{\rho R^{3}}{M}=-\frac{4 R}{9 \pi} \text { as } M=\frac{3 \pi \rho R^{2}}{2} .
\end{aligned}
$$

2. The relationship between the lab coordinates and the CM coordinates is

$$
\begin{aligned}
x_{C M} & =R \theta-\left|\bar{y}_{C M}\right| \sin \theta=R \theta-(4 R / 9 \pi) \sin \theta, \\
y_{C M} & =R-\left|\bar{y}_{C M}\right| \cos \theta=R-(4 R / 9 \pi) \cos \theta .
\end{aligned}
$$

3. To find $I_{3}^{C M}$ we calculate first I_{3}^{0} with respect to the center of disk and use the parallel axis theorem, (32.12) of Landau and Lifshitz,

$$
\begin{aligned}
\left.I_{3}\right|_{0} & =\rho \int_{0}^{R} d r r \int_{0}^{\pi} d \theta\left(x^{2}+y^{2}\right)+2 \rho \int_{0}^{R} d r r \int_{\pi}^{2 \pi} d \theta\left(x^{2}+y^{2}\right) \\
& =\rho \frac{R^{4}}{4} \pi+2 \rho \frac{R^{4}}{4} \pi=\rho R^{4} \frac{3}{4} \pi=\frac{1}{2} M R^{2} \\
\left.I_{3}\right|_{C M} & =\left.I_{3}\right|_{0}-M \bar{y}_{C M}^{2}=\frac{1}{2} M R^{2}-M \frac{16}{81} \frac{R^{2}}{\pi^{2}}=\frac{1}{2} M R^{2}\left[1-\frac{32}{81 \pi^{2}}\right] .
\end{aligned}
$$

4. The Lagrangian of the disk is

$$
L=\frac{1}{2} M\left(\dot{x}_{C M}^{2}+\dot{y}_{C M}^{2}\right)+\frac{1}{2} I_{3} \dot{\theta}^{2}-M g y_{C M} .
$$

