HOME AND CLASS WORK - SET 1

Solution for assignment 5.

1. The Lagrangian is

$$
L=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} x^{2} .
$$

Thus, the Euler-Lagrange equation becomes

$$
0=\frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=-x-\ddot{x}
$$

and the general solution is given by $x(t)=A \sin (t)+B \cos (t)$. The integration constants are determined by the boundary conditions

$$
x(0)=B=0 \quad \text { and } \quad x(\pi / 2)=A=1
$$

so that the exact path is

$$
x(t)=\sin (t) .
$$

For this path the action is given by

$$
S[x(t)]=\frac{1}{2} \int_{0}^{\pi / 2} d t\left[\cos ^{2}(t)-\sin ^{2}(t)\right]=\frac{1}{2} \int_{0}^{\pi / 2} d t \cos (2 t)=0 .
$$

2. For a linear path $x(t)=a+b t$ subject to the boundary conditions:

$$
x(0)=a=0 \text { and } x(\pi / 2)=b \frac{\pi}{2}=1 \Rightarrow b=\frac{2}{\pi}
$$

so that this path is

$$
x(t)=\frac{2}{\pi} t .
$$

For this path the action is given by

$$
\begin{aligned}
S[x(t)] & =\frac{1}{2} \int_{0}^{\pi / 2} d t\left[\left(\frac{2}{\pi}\right)^{2}-\left(\frac{2}{\pi}\right)^{2} t^{2}\right]=\frac{2}{\pi^{2}} \int_{0}^{\pi / 2} d t\left(1-t^{2}\right) \\
& =\frac{2}{\pi^{2}}\left[\frac{\pi}{2}-\frac{1}{3}\left(\frac{2}{\pi}\right)^{3}\right]=\frac{1}{\pi}\left(1-\frac{\pi^{2}}{12}\right)=\frac{1}{\pi}-\frac{\pi}{12}=0.0565 \ldots
\end{aligned}
$$

3. Assuming that the previous result is in $J \cdot s$, we find for the large number

$$
S / \hbar \approx 5.37 \times 10^{32}
$$

