Solution for assignment 14: Problems 1 and 2, Landau-Lifshitz p. 24.

1. The Lagrangians are

$$
\begin{aligned}
L & =\frac{1}{2} m\left(\frac{d \vec{r}}{d t}\right)^{2}-U \\
L^{\prime} & =\frac{1}{2} m^{\prime}\left(\frac{d \vec{r}}{d t^{\prime}}\right)^{2}-U^{\prime}
\end{aligned}
$$

After substituting $t^{\prime}=t \sqrt{m^{\prime} / m}$ in L^{\prime} the Lagrangians agree and the same paths are obtained for

$$
t^{\prime} / t=\sqrt{m^{\prime} / m}
$$

2. The Lagrangians are

$$
\begin{aligned}
L & =\frac{1}{2} m\left(\frac{d \vec{r}}{d t}\right)^{2}-U \\
L^{\prime} & =\frac{1}{2} m\left(\frac{d \vec{r}}{d t^{\prime}}\right)^{2}-U^{\prime \prime}
\end{aligned}
$$

Assume $U^{\prime}=\alpha U$. After substituting $t^{\prime}=t / \sqrt{\alpha}$ we obtain

$$
L^{\prime}=\alpha L .
$$

Therefore the same paths are obtained for

$$
t^{\prime} / t=\alpha^{-1 / 2}=\sqrt{U / U^{\prime}}
$$

