Solution for assignment 19: Effective Potential.

$$
U_{\mathrm{eff}}(r)=-\frac{\alpha}{r}+\frac{M^{2}}{2 m r^{2}}
$$

with M angular momentum and m reduced mass.
(A) Solve now for $r=r_{0}$:

$$
U_{\mathrm{eff}}^{\prime}(r)=+\frac{\alpha}{r}-\frac{2 M^{2}}{2 m r^{3}}=0 \Rightarrow \alpha r_{0}=\frac{M^{2}}{m} \Rightarrow r_{0}=\frac{M^{2}}{\alpha m} .
$$

(B) The minimum value of the effective potential:

$$
U_{\mathrm{eff}}^{\min }=U_{\mathrm{eff}}\left(r_{0}\right)=-\frac{\alpha^{2} m}{M^{2}}+\frac{\alpha^{2} m}{2 M^{2}}=-\frac{\alpha^{2} m}{2 M^{2}} .
$$

(C) Calculation of the turning points for $E<0$: We are looking of solutions of the quadratic equation

$$
\begin{aligned}
E r^{2}+\alpha r-\frac{M^{2}}{2 m} & =0 \\
r^{2}+p r-q & =0 \text { with } p=\frac{\alpha}{E}, q=-\frac{M^{2}}{2 m E} \\
r_{\min , \max }=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q} & =-\frac{\alpha}{2 E} \pm \sqrt{\left(\frac{\alpha}{2 E}\right)^{2}+\frac{M^{2}}{2 m E}}
\end{aligned}
$$

Recall that E is negative.
(D) When do we have real solutions? The upper bound is $E<0$, the lower follows from

$$
\left(\frac{\alpha}{2 E}\right)^{2}+\frac{M^{2}}{2 m E}=0 \Rightarrow \frac{\alpha^{2}}{4 E}+\frac{M^{2}}{2 m}=0 \Rightarrow E=-\frac{\alpha^{2} m}{2 M^{2}} .
$$

So, we find

$$
-\frac{\alpha^{2} m}{2 M^{2}}<E<0
$$

and the lower value is the minimum of the effective potential as calculated under (B).

