> Solution for assignment 20: Kepler Ellipse.

Rewritten and using $\cos \theta=x / r$, the initial equation becomes

$$
p=r(1+e \cos \theta)=r(1+e x / r)=r+e x \quad \text { or } r=p-e x .
$$

Squaring both sides

$$
x^{2}+y^{2}=p^{2}-2 p e x+e^{2} x^{2} .
$$

Bringing all terms with x or y to one side,

$$
\begin{gathered}
x^{2}\left(1-e^{2}\right)+2 p e x+y^{2}=p^{2}, \\
x^{2}+\frac{2 p e}{1-e^{2}} x+\frac{y^{2}}{1-e^{2}}=\frac{p^{2}}{1-e^{2}}
\end{gathered}
$$

According to the recipe for completion of the square we substitute

$$
x^{\prime}=x+\frac{p e}{1-e^{2}}
$$

and obtain

$$
\begin{gathered}
x^{\prime 2}+\frac{y^{2}}{1-e^{2}}=\frac{p^{2}}{1-e^{2}}+\left(\frac{p e}{1-e^{2}}\right)^{2}=\frac{p^{2}\left(1-e^{2}\right)+p^{2} e^{2}}{\left(1-e^{2}\right)^{2}}=\frac{p^{2}}{\left(1-e^{2}\right)^{2}} \\
x^{\prime 2} \frac{\left(1-e^{2}\right)^{2}}{p^{2}}+y^{2} \frac{1-e^{2}}{p^{2}}=1
\end{gathered}
$$

With the definitions

$$
a=\frac{p}{1-e^{2}} \quad \text { and } \quad b=\frac{p}{\sqrt{1-e^{2}}}
$$

this reads

$$
\left(\frac{x^{\prime}}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

