Solution for assignment 22: Turning points of the spherical pendulum for a special case.

The Energy is

$$
\begin{equation*}
E=\frac{m}{2} R^{2} \dot{\theta}^{2}+\frac{m}{2} R^{2} \sin ^{2}(\theta) \dot{\phi}^{2}+U_{0} \cos (\theta) \tag{1}
\end{equation*}
$$

with U_{0} given by $U_{0}=m g R=E / 2$. The angular momentum

$$
\begin{equation*}
M_{z}=m R^{2} \sin ^{2}(\theta) \dot{\phi} \tag{2}
\end{equation*}
$$

is conserved. Substituting $\dot{\phi}^{2}=M_{z}^{2} /\left(m^{2} R^{4} \sin ^{4} \theta\right)$ the energy becomes

$$
\begin{equation*}
E=\frac{m}{2} R^{2} \dot{\theta}^{2}+\frac{M_{z}^{2}}{2 m R^{2} \sin ^{2} \theta}+U_{0} \cos (\theta) \tag{3}
\end{equation*}
$$

with $M_{z}^{2} /\left(2 m R^{2}\right)=E$. Turning points are then given by the solutions of

$$
\begin{align*}
& 0=\frac{m}{2} R^{2} \dot{\theta}^{2}=E-\frac{E}{\sin ^{2} \theta}-\frac{E}{2} \cos \theta \tag{4}\\
& 0=\sin ^{2}(\theta)-1-\frac{1}{2} \cos \theta \sin ^{2} \theta=\cos ^{2}(\theta)-\frac{1}{2} \cos \theta+\frac{1}{2} \cos ^{3} \theta \tag{5}
\end{align*}
$$

With $x=\cos \theta$

$$
\begin{equation*}
0=+x\left(x^{2}-2 x-1\right) \tag{6}
\end{equation*}
$$

with the solutions $x_{0}=0 \Rightarrow \theta_{0}=\pi / 2$ and

$$
\begin{equation*}
x_{1,2}=1 \pm \sqrt{1+1}=1 \pm \sqrt{2} \tag{7}
\end{equation*}
$$

of which only $x_{2}=1-\sqrt{2}$ is in the physical range of $\cos \theta$. So, we find the turning points

$$
\begin{align*}
\theta_{\min } & =\cos ^{-1}(0)=\frac{\pi}{2}=1.5707963 \ldots \tag{8}\\
\theta_{\max } & =\cos ^{-1}(1-\sqrt{2})=1.9978749 \ldots \tag{9}
\end{align*}
$$

As an addtional task a plot of

$$
\begin{equation*}
f(\theta)=\frac{E}{\sin ^{2} \theta}+\frac{E}{2} \cos \theta-E \tag{10}
\end{equation*}
$$

for, e.g., $E=1$ is instructive.

