ADVANCED DYNAMICS - PHY 4936
 HOME AND CLASS WORK - SET 5

Solution for assignment 25:
Normal Modes of Double Pendulum (continuation of 8).
For small oscillation we have derived the Euler-Lagrange equations, which read in matrix notation

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{\ddot{\phi}}{\ddot{\psi}}+\left(\begin{array}{cc}
2 g / l & 0 \\
0 & g / l
\end{array}\right)\binom{\phi}{\psi}=0
$$

This is solved by the exponential ansatz (physical is the real part of the solution):

$$
\begin{gathered}
\Phi(t)=\binom{\phi}{\psi}=e^{i \omega t}\binom{\phi_{0}}{\psi_{0}} \Rightarrow\binom{\ddot{\phi}}{\ddot{\psi}}=-\omega^{2} e^{i \omega t}\binom{\phi_{0}}{\psi_{0}} \\
\left(\begin{array}{cc}
-2 \omega^{2}+2 g / l & -\omega^{2} \\
-\omega^{2} & -\omega^{2}+g / l
\end{array}\right)\binom{\phi}{\psi}=0 . \\
0=\operatorname{det}\left|\begin{array}{cc}
-2 \omega^{2}+2 g / l & -\omega^{2} \\
-\omega^{2} & -\omega^{2}+g / l
\end{array}\right|=\omega^{4}-\frac{4 g}{l} \omega^{2}+\frac{2 g^{2}}{l^{2}}
\end{gathered}
$$

with eigenmodes

$$
\omega_{ \pm}=\sqrt{\frac{g}{l}} \sqrt{2 \pm \sqrt{2}} .
$$

