ADVANCED DYNAMICS — PHY 4936

Solution 27: (A) Let $\lambda = \omega^2$. We have to solve

det
$$\begin{vmatrix} 5-\lambda & 1-\lambda\\ 1-\lambda & 2(1-\lambda) \end{vmatrix} = 0$$
,

which leads to the quadratic equation

$$0 = (5 - \lambda) 2 (1 - \lambda) - (1 - \lambda) (1 - \lambda)$$

= 10 - 2 \lambda - 10 \lambda + 2 \lambda^2 - 1 + 2 \lambda - \lambda^2
= \lambda^2 - 10 \lambda + 9

with the solutions

$$\begin{aligned} \omega_{1,2}^2 &= \lambda_{1,2} &= 5 \pm \sqrt{5^2 - 9} = 5 \pm 4 \\ \omega_1^2 &= \lambda_1 &= 9, \quad \omega_2^2 &= \lambda_2 &= 1. \end{aligned}$$

(B) Using normal coordinates $\Theta_1 = \text{Re} [C_1 \exp(i\omega_1 t)]$ and $\Theta_2 = \text{Re} [C_2 \exp(i\omega_2 t)]$, the general solutions are the superpositions

$$\begin{aligned} x_1 &= \ \bigtriangleup_{11} \Theta_1 + \bigtriangleup_{12} \Theta_2 \\ x_2 &= \ \bigtriangleup_{21} \Theta_1 + \bigtriangleup_{22} \Theta_2 \end{aligned}$$

It turns out that we have to take the minor of the second row, because for the first row the Δ_{12} and Δ_{22} minors are both zero. Solutions are then

$$\begin{aligned} x_1 &= 8 \Theta_1 + 0 = 8 \Theta_1 \\ x_2 &= -4 \Theta_1 + 4 \Theta_2 . \end{aligned}$$

(C) Substituting these equations into the Lagrangian

$$L = \frac{1}{2} \left(\dot{x}_1 \, \dot{x}_1 + \dot{x}_1 \, \dot{x}_2 + \dot{x}_2 \, \dot{x}_1 + 2 \, \dot{x}_2 \, \dot{x}_2 - 5 \, x_1 \, x_1 - x_1 \, x_2 - x_2 \, x_1 - 2 \, x_2 \, x_2 \right)$$

diagonalizes simultaneously both terms and gives

$$L = 16 \left(\dot{\Theta}_{1}\right)^{2} + 16 \left(\dot{\Theta}_{2}\right)^{2} - 144 \left(\Theta_{1}\right)^{2} - 16 \left(\Theta_{2}\right)^{2}$$

(D) The initial condition $\Theta_1(0) = 1$ and $\dot{\Theta}_1(0) = 0$ implies $\Theta_1(t) = \cos(\omega_1 t) = \cos(3t)$. and initial condition $\Theta_2(0) = 0$ and $\dot{\Theta}_1(0) = 1$ implies $\Theta_2(t) = \sin(\omega_2 t) = \sin(t)$. Plots in the Θ_1 , Θ_2 and x_1 , x_2 planes follow.

