## ADVANCED DYNAMICS - PHY 4936

Solution 28:

$$
\ddot{x}+\omega_{1} x=0, \quad \ddot{y}+\omega_{1} y=0
$$

Solution with $x_{0}=y_{0}=0$;

$$
\begin{aligned}
& x(t)=A_{1} \sin \left(\omega_{1} t\right) \\
& y(t)=A_{2} \sin \left(\omega_{2} t\right)
\end{aligned}
$$

Now, $x\left(t_{1}\right)=y\left(t_{1}\right)=0$ for some future time $t_{1}>0$ implies

$$
\begin{equation*}
\omega_{1} t_{1}=n \pi, \quad \omega_{2} t_{1}=m \pi \tag{1}
\end{equation*}
$$

with $n$, $m$ integers $\geq 1$. With $n$ and $m$ being the smallest integers, so that (1) holds, the time becomes

$$
t_{1}=\frac{n \pi}{\omega_{1}}=\frac{m \pi}{\omega_{2}}
$$

