Solution 35:

$$\dot{\vec{\phi}} = \dot{\phi} \, \hat{Z} \, .$$

 $\dot{\vec{\theta}}$ is along the node axis ON. Therefore, $\dot{\vec{\theta}} = \dot{\theta} \cos \phi \, \hat{X} + \dot{\theta} \sin \phi \, \hat{Y}$.

 $\dot{\vec{\psi}} = \dot{\psi}\,\hat{x}_3$ and $\hat{x}_3 = \cos\theta\,\hat{Z} + \sin\theta\,\hat{\rho}$, where $\hat{\rho}$ is in the X-Y plane, $\hat{\rho} = \sin\phi\,\hat{X} - \cos\phi\,\hat{Y}$. Therefore, $\dot{\vec{\psi}} = \dot{\psi}\,\cos\theta\,\hat{Z} + \dot{\psi}\,\sin\phi\,\hat{X} - \dot{\psi}\,\cos\phi\,\hat{Y}$.

Collecting all terms $(\Omega_X = \hat{X} \cdot \vec{\Omega})$ and so on:

$$\Omega_X = \dot{\theta} \cos \phi + \dot{\psi} \sin \phi \,,$$

$$\Omega_Y = \dot{\theta} \sin \phi - \dot{\psi} \cos \phi,$$

$$\Omega_Z = \dot{\phi} + \dot{\psi} \cos \theta.$$