Solution for assignment 38

Liouville's Theorem

We consider motion of point particles with n degrees of freedom in phase space, which is described by a Hamiltonian

$$
H\left(q_{1}, \ldots, q_{n} ; p_{1}, \ldots, p_{n}\right)
$$

Let $\rho\left(q_{1}, \ldots, q_{n} ; p_{1}, \ldots, p_{n} ; t\right)$ be the density in phase space and the velocity of the density element is the vector

$$
\vec{v}=\left(\dot{q}_{1}, \ldots, \dot{q}_{n} ; \dot{p}_{1}, \ldots, \dot{p}_{n}\right) .
$$

The gradient is now also defined in phase space (\hat{q}_{i} and \hat{p}_{i} are unit vectors):

$$
\nabla=\sum_{i=1}^{n}\left(\hat{q}_{i} \frac{\partial}{\partial q_{i}}+\hat{p}_{i} \frac{\partial}{\partial p_{i}}\right) .
$$

The continuity equation reads

$$
0=\frac{\partial \rho}{\partial t}+\nabla \cdot \vec{j}=\frac{\partial \rho}{\partial t}+\nabla \cdot(\vec{v} \rho)
$$

as $\vec{j}=\vec{v} \rho$ holds. Therefore,

$$
0=\frac{\partial \rho}{\partial t}+\rho \nabla \cdot \vec{v}+\vec{v} \cdot \nabla \rho=\frac{\partial \rho}{\partial t}+\rho \sum_{i=1}^{n}\left(\frac{\partial \dot{q}_{i}}{\partial q_{i}}+\frac{\partial \dot{p}_{i}}{\partial p_{i}}\right)+\sum_{i=1}^{n}\left(\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right) .
$$

Using Hamilton's equations we have

$$
\frac{\partial \dot{q}_{i}}{\partial q_{i}}=+\frac{\partial}{\partial q_{i}} \frac{\partial H}{\partial p_{i}} \text { and } \frac{\partial \dot{p}_{i}}{\partial p_{i}}=-\frac{\partial}{\partial p_{i}} \frac{\partial H}{\partial q_{i}} .
$$

Interchanging the derivative these terms cancel one another $(\nabla \cdot \vec{v}=0$ in phase space $)$ and we are left with Liouville's theorem:

$$
0=\frac{\partial \rho}{\partial t}+\sum_{i=1}^{n}\left(\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right)=\frac{d \rho}{d t} .
$$

This is the motion of an incompressible fluid, but in phase space instead of coordinate space.

