Solution for assignment 38

Liouville’s Theorem

We consider motion of point particles with n degrees of freedom in phase space,
which is described by a Hamiltonian

H(q1, ... qn;iD1y-- - Dn) -

Let p(qi, ..., qn;P1s---,Pn;t) be the density in phase space and the velocity of the
density element is the vector

v = (QIaaqnaplaapn)
The gradient is now also defined in phase space (¢; and p; are unit vectors):
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The continuity equation reads
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Using Hamilton’s equations we have
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Interchanging the derivative these terms cancel one another (V-4 = 0 in phase space)
and we are left with Liouville’s theorem:
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This is the motion of an incompressible fluid, but in phase space instead of coordinate
space.




