
Electrodynamics A (PHY 5346) Fall 2016 Solutions

Set 1:

1. Non-relativistic distance measurement

With x = vt the first event is conveniently chosen x0 = 0 for t = 0.

In the non-relativistic limit u′ = u− v and the elastic bounce back ve-
locity in the frame K′ is −u′. So it is in frame K

−u′+ v =−u+2v .

Hence, u > 2v is required for the ball to come back at all. Assume the
ball is emitted at time te. It will hit O′0 at a time t1 determined by

x1 = vt1 = u(t1− te) ⇒ t1 =
ute

u− v
and x1 = vt1 =

uvte

u− v
.

With tr
1 defined as the time at which the ball is received back by O0,

(u−2v)(tr
1− t1) = x1 = vt1 ,

(u−2v) tr = (u−2v) t1 + vt1 = (u− v) t1 = ute .

Introducing the time difference4t = tr−te between received and emit-
ted,

u(tr− te) = u4t = 2vtr = 2v(te +4t) ,

with the final result

v =
u4t

2(te +4t)
→ u

2
for4t→ ∞ . (1)

This ought to be compared with the equation for a light signal, which
is for the situation x = vt (i.e., x0 = 0) derived from

x1 = v(te +4t/2) =
c4t

2
⇒ v =

c4t
2(te +4t/2)

→ c for4t→ ∞ .

Due to the asymmetry of the outward and return travel in the non-
relativistic case, equation (1) is more difficult to derive than the one
for light. Besides, there is a crucial difference by a factor of two for4t
in the denominator. A return signal is only received for u > 2v, whereas
c > v is sufficient for light signals.



2. Galilei transformations

The equation
c2t2−~x2 = 0 in K

is derived from
~x−~ct = 0

which holds in K for the propagation of the light in the direction~c. This
equation transforms into

~x
′−~vt−~ct = 0 in K′ .

Hence, in K′

~x
′−~c ′t = 0 with ~c

′
=~c+~v .

In K′ the speed of light c′ =
√

c′2 is no longer a constant, but c′2 =
(~c+~v)2 depends on the angle between~c and~v.

3. Contractions.

(1), (2) and (3) : 25−1−4−9 = 11;

(4) and (5) : 25−9−16 = 0;

(6) : 25−9−16 =−4;

(7) : 25−0−9−16 = 0.

4. Time and relativistic distance measurements by light signals.

A sufficiently accurate approximation of The elapsed time is given by

2,757,790
9,193

[s]≈ 300 [s] .

(1) The relation x =4t/2 gives for all three times

10−3×3×105 [km] = 300 [km] .

Therefore, O2 is at rest with respect to O1.

(2) We find the following positions at the following times:

x1 = 300 [km] at t1 = 1.001 [s] ,

x2 = 600 [km] at t2 = 2.002 [s] ,

x3 = 900 [km] at t3 = 3.003 [s] .



This gives the velocities

v21 =
x2− x1

t2− t1
=

300 [km]

(2.002−1.001 [s]
=

300 [km]

1.001 [s]
≈ 299.7 [km/s] ,

v32 =
x3− x2

t3− t2
=

300 [km]

(3.003−2.002) [s]
=

300 [km]

1.001 [s]
≈ 299.7 [km/s] .

So, the results are consistent with the idea that O2 is at rest in an inertial
frame, which moves with about 299.7 [km/s] with respect to the inertial
frame of O1. The position of O2 with respect to O1 is then given by

x(t) = x0 + vt =
300 [km]

1.001 [s]
t ,

where x0 = 0 follows from x(t1) = 300 [km].

(3) We find again the positions x1 = 300 [km] at t1 = 1.001 [s] and x2 =
600 [km] at t2 = 2.002 [s], which gives again v21 = (300/1.001) [km/s],
but now

x3 = 1200 [km] at t3 = 3.004 [s] ,

which gives

v32 =
x3− x2

t3− t2
=

600 [km]

1.002 [s]
≈ 588.2 [km/s] .

As v21 and v32 disagree, O2 cannot be at rest in an inertial frame.

Note: If one wants to find suitable t2, t1,4t2 and4t1 values for a given
speed v, this can be done using the formula

t2− t1 =
c
2
4t2−4t1

v
.

There many solutions. For instance with, besides v, also4t2−4t1 > 0
given, any t2 − t1 difference that matches will do. For instance, for
4t2−4t1 = 2× 103[s] and t1 = 1.001 [s], t2− t1 = 1 [s] (not 1.001 [s])
is needed to get precisely 300 [km/s]. Means starting time for t2 at
1.999 [s], receiving time at 2.003 [s]..


