Electrodynamics A (PHY 5346) Fall 2016 Solutions

Set 1:

. Non-relativistic distance measurement

With x = vt the first event is conveniently chosen xp = 0 for # = 0.

In the non-relativistic limit ' = u — v and the elastic bounce back ve-
locity in the frame K’ is —u/. So it is in frame K

—u +v=—u+2v.

Hence, u > 2v is required for the ball to come back at all. Assume the
ball is emitted at time 7¢. It will hit Of, at a time ¢; determined by
ut® uvt®

and x; = vt = .
u—v u—v

X] =vl = u(t1 —l‘e) = 1 =
With #] defined as the time at which the ball is received back by Oy,
(u—2v)(t] —t1) =x1 =vty,

(u=2v)t"=w—2v)ty +vty = (u—v)t; = ut®.

Introducing the time difference /At =¢" —t¢ between received and emit-
ted,
u(t" =) =ult =2vt" =2v(t° + At),

with the final result

At
v “ — Y for At — oo (1)
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This ought to be compared with the equation for a light signal, which
is for the situation x = vt (i.e., xg = 0) derived from

c/\t c/\t

x1=v({+At)2)=— = v

S — for At — 0.
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Due to the asymmetry of the outward and return travel in the non-
relativistic case, equation (1) is more difficult to derive than the one
for light. Besides, there is a crucial difference by a factor of two for /At
in the denominator. A return signal is only received for u > 2v, whereas
¢ > v is sufficient for light signals.



2. Galilei transformations

The equation
22 22 -
ct"—x"=0 inK

is derived from
X—7¢t=0

which holds in K for the propagation of the light in the direction ¢. This
equation transforms into

-/ — — . /
X —vt—ct=0 inK .
Hence, in K’
I . B
X —ct=0 with ¢ =c+V.

In K’ the speed of light ¢/ = v/¢’? is no longer a constant, but ¢'> =
(¢+v)? depends on the angle between ¢ and ¥.

3. Contractions.

(1), (2)and (3): 25—1—-4—-9=11,;

(4)and (5): 25—9—16=0;
(6): 25—9—16=—4;
(7): 25-0-9—16=0.

4. Time and relativistic distance measurements by light signals.
A sufficiently accurate approximation of The elapsed time is given by

2,757,790

9.193 [s] = 300(s].

(1) The relation x = At /2 gives for all three times
1073 x 3 x 10° [km] = 300 [km].
Therefore, O, is at rest with respect to O;.

(2) We find the following positions at the following times:

x1 =300[km] at £ =1.001]s],
X2 =600[km] at 1 =2.002[s],
x3=900[km] at 13 =23.003[s].



This gives the velocities

X2 —X] 300 [km] 300 [km]
- = = ~ 299.7 [k
Va1 -t (2002—1.001[s] _ 1.001[s] [km/s],
— 300 [k 300 [k
py = BTR [km)] _ [km] ~ 299.7[km/s].

s—t,  (3.003—2.002)[s] _ 1.001]s]

So, the results are consistent with the idea that O is at rest in an inertial
frame, which moves with about 299.7 [km/s| with respect to the inertial
frame of O;. The position of O, with respect to O is then given by

where xo = 0 follows from x(#;) = 300 [km].

(3) We find again the positions x; = 300 [km] at t; = 1.001 [s] and x, =
600 [km] at t, = 2.002 [s], which gives again vo; = (300/1.001) [km//s],
but now

x3=1200[km] at 3 =3.004[s],
which gives

X3 —Xx2 600 [km]
= = ~ 588.2 |k .
V32 13—t 1.002 [S] [ m/s]

As vp1 and v3, disagree, O, cannot be at rest in an inertial frame.

Note: If one wants to find suitable #,, t;, At and /AA#; values for a given
speed v, this can be done using the formula
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h—t = - ————.

2—1h 2 )
There many solutions. For instance with, besides v, also Aty — At >0
given, any f, — t; difference that matches will do. For instance, for
Aty — Aty =2 x 103[s] and 1; = 1.001[s], t, —t; = 1 [s] (not 1.001 [s])
is needed to get precisely 300 [km/s]. Means starting time for , at
1.999 ], receiving time at 2.003 [s]..



