Electrodynamics A (PHY 5346) Fall 2016 Final Decenber 14.

1. Electron-positron annhilation (40\%).

An electron and a positron, each (for $c=1$) with mass equal to $0.511[\mathrm{MeV}]$, annihilate at rest into two photons.
(a) Working in the rest frame of the positronium, so that one of the photons moves in positive $x=x^{1}$ direction, find the momentum four-vector for each photon.
(b) Suppose that the annihilation took place in a galaxy that is receding from us at $\beta=3 / 5$. What is the energy of the photon that we observe?

2. Coaxial cable (30\%).

Consider a long, straight coaxial cable with a circular cross section. A constant current flows from a source to a target through the inner conductor ($0 \leq \rho \leq \rho_{1}$) and back through the outer conductor ($\rho_{2} \leq \rho \leq \rho_{3}$). Assume vacuum in the in-between region ($\rho_{1}<\rho<\rho_{2}$) and use Ampére's law to calculate the magnetic field everywhere.

3. Electric potential from distinct BCs on half-spheres (30\%).

(a) Consider a constant potential Φ_{0} on the surface of the upper half of a hollow sphere of radius R and $\Phi=0$ on the surface of the lower half of this sphere with no charges inside. Choose the center of the sphere at $x=y=z=0$, its upper half above and its lower half below the $x-y$ plane. Use the Green function of a sphere to calculate the potential on the z axis inside this sphere.
(b) Take $R=1$ and $\Phi_{0}=1$. Evaluate $\Phi(z)$ for the values $z=R, z=R / 2, z=0$, $z=-R / 2$ and $z=-R$. Sketch $\Phi(z)$ in the range $-1 \leq z \leq 1$.

