Electrodynamics A (PHY 5346) Fall 2016 Midterm October 11.

1. Spacetrip (40\%).

(A) Assume that the earth is in an inertial frame. A spaceship leaves the earth at time 0 . The spaceship is constructed so that it has an acceleration g in each of its own instantaneous rest frames. By its own clock, it accelerates on a straight-line path for 1 year, decelerates at the same rate for 1 year, turns around, accelerates for 1 year, decelerates for 1 year, and lands on earth. Calculate the time on earth at the landing. Instructions: Use $g=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$, one year $=365 \times 24 \times 3600[s]$ and for the speed of light $c=300,000[\mathrm{~km} / \mathrm{s}]$. State the result in units of years and decimal fractions of years to at least three significant digits. Hint: Find first $\zeta(\tau)$, where τ is the proper time in the spaceship and $\zeta(\tau)$ its rapidity with respect to Earth.
(B) How far away from Earth did the spaceship travel? Express the result in light years.

2. Lorentz invariance of antisymmetry (20\%).

Show that an antisymmetric tensor $F^{\alpha \beta}$ stays antisymmetric under Lorentz transformations, i.e.,

$$
F^{\prime \alpha \beta}=-F^{\prime \beta \alpha} \quad \text { with } \quad F^{\prime \alpha \beta}=a_{\hat{\alpha}}^{\alpha} a_{\hat{\beta}}^{\beta} F^{\hat{\alpha} \hat{\beta}} .
$$

3. Some electromagnetic invariants (40\%).

Express the invariants $F_{\alpha \beta} F^{\alpha \beta}, F_{\alpha \beta}{ }^{*} F^{\alpha \beta}$ and ${ }^{*} F_{\alpha \beta}{ }^{*} F^{\alpha \beta}$ in terms of \vec{E} and \vec{B} fields, where ${ }^{*} F^{\alpha \beta}$ is the dual tensor.

