Electrodynamics A (PHY 5346) Fall 2016 Midterm October 11.

1. Spacetrip (40%).

(A) Assume that the earth is in an inertial frame. A spaceship leaves the earth at time 0. The spaceship is constructed so that it has an acceleration g in each of its own instantaneous rest frames. By its own clock, it accelerates on a straight-line path for 1 year, decelerates at the same rate for 1 year, turns around, accelerates for 1 year, decelerates for 1 year, and lands on earth. Calculate the time on earth at the landing. Instructions: Use $g = 9.81 \ [m/s^2]$, one year $= 365 \times 24 \times 3600 \ [s]$ and for the speed of light $c = 300,000 \ [km/s]$. State the result in units of years and decimal fractions of years to at least three significant digits. Hint: Find first $\zeta(\tau)$, where τ is the proper time in the spaceship and $\zeta(\tau)$ its rapidity with respect to Earth.

(B) How far away from Earth did the spaceship travel? Express the result in light years.

2. Lorentz invariance of antisymmetry (20%).

Show that an antisymmetric tensor $F^{\alpha\beta}$ stays antisymmetric under Lorentz transformations, i.e.,

$$F'^{\alpha\beta} = -F'^{\beta\alpha}$$
 with $F'^{\alpha\beta} = a^{\alpha}_{\ \hat{\alpha}} a^{\beta}_{\ \hat{\beta}} F^{\hat{\alpha}\hat{\beta}}$

3. Some electromagnetic invariants (40%).

Express the invariants $F_{\alpha\beta} F^{\alpha\beta}$, $F_{\alpha\beta} * F^{\alpha\beta}$ and $*F_{\alpha\beta} * F^{\alpha\beta}$ in terms of \vec{E} and \vec{B} fields, where $*F^{\alpha\beta}$ is the dual tensor.