Electrodynamics A (PHY 5346) Fall 2016 Solutions Final December 14.

1. Electron-positron annihilation.

Let us use natural units with $c=1$ and denote the four-vectors of the photons by p and q. Energy conservation:

$$
p^{0}+q^{0}=2 E \text { with } E=0.511[\mathrm{MeV}] .
$$

Momentum conservation and massless photons:

$$
\vec{p}=-\vec{q} \text { and } p^{2}=q^{2}=0
$$

(a) Therefore, we have in the frame where the photon with momentum p moves along the positive x^{1} direction

$$
\left(p^{\alpha}\right)=\left(\begin{array}{l}
E \\
E \\
0 \\
0
\end{array}\right) \quad \text { and } \quad\left(q^{\alpha}\right)=\left(\begin{array}{c}
E \\
-E \\
0 \\
0
\end{array}\right) .
$$

(b) $\beta=3 / 5 \rightarrow \gamma=1 / \sqrt{1-\beta^{2}}=5 / 4$ and the energy is the zero component of a four-vector transforms according to

$$
E^{\prime}=\gamma(1-\beta) E=\frac{1}{2} E=0.2555[M e V] .
$$

2. Coaxial cable.

Ampére's law reads

$$
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{J}
$$

where in our case $\vec{J}=J \hat{z}$ and

$$
J=J(\rho)=\left\{\begin{array}{l}
J_{1}=I /\left(\pi \rho_{1}^{2}\right) \text { for } \rho \leq \rho_{1} \\
0 \text { for } \rho_{1}<\rho<\rho_{2} \\
J_{2}=-I /\left(\pi \rho_{3}^{2}-\pi \rho_{2}^{2}\right) \text { for } \rho_{2} \leq \rho \leq \rho_{3} \\
0 \text { for } \rho>\rho_{3}
\end{array}\right.
$$

Now $\vec{B}=B_{\phi} \hat{\phi}$ with $B_{\phi}=B=|\vec{B}|$ and

$$
2 \pi \rho B_{\phi}=\rho \int_{0}^{2 \pi} d \phi B_{\phi}=\oint d \vec{s} \cdot \vec{B}=\int_{S} d a \hat{a} \cdot(\nabla \times \vec{B})=\frac{4 \pi}{c} \int_{S} d a \hat{a} \cdot \vec{J}
$$

$\rho \leq \rho_{1}:$

$$
2 \pi \rho B_{\phi}=\frac{4 \pi}{c} J_{1} \pi \rho^{2} \Rightarrow B=\frac{2}{c} J_{1} \pi \rho=\frac{2 I \rho}{c \rho_{1}^{2}} .
$$

$\rho_{1}<\rho<\rho_{2}:$

$$
2 \pi \rho B_{\phi}=\frac{4 \pi}{c} J_{1} \pi \rho_{1}^{2} \Rightarrow B=\frac{2 I}{c \rho} .
$$

$\rho_{2} \leq \rho \leq \rho_{3}:$

$$
B=\frac{2 I}{c \rho}+\frac{2 J_{2}}{c \rho} \pi\left(\rho^{2}-\rho_{2}^{2}\right)=\frac{2 I}{c \rho} \frac{\left(\rho_{3}^{2}-\rho^{2}\right)}{\left(\rho_{3}^{2}-\rho_{2}^{2}\right)} .
$$

Finally, $\rho>\rho_{3}$:

$$
B=0
$$

3. Potential from distinct BCs on half-spheres.
(a) We have to calculate

$$
\Phi(r)=\left.R^{2} \int_{S} d \Omega^{\prime} \Phi_{0} \frac{\partial G_{D}}{\partial r^{\prime}}\right|_{r^{\prime}=R}
$$

where the surface is the upper half-sphere and the derivative of the Green function is given by

$$
\left.\frac{\partial G_{D}}{\partial r^{\prime}}\right|_{r^{\prime}=R}=\frac{R^{2}-r^{2}}{4 \pi R\left(R^{2}+r^{2}-2 R r \cos \gamma\right)^{3 / 2}}
$$

with $\cos \gamma=\cos (\theta) \cos \left(\theta^{\prime}\right)+\sin (\theta) \sin \left(\theta^{\prime}\right) \cos \left(\phi-\phi^{\prime}\right)$. For $r=z$ on the z-axis we have $\theta=0$ and, hence, $\cos \gamma=\cos \theta^{\prime}$. The integral over the upper half-sphere becomes

$$
\Phi(z)=\Phi_{0} \frac{R}{2}(R+z)(R-z) \int_{0}^{1} \frac{d \cos \theta^{\prime}}{\left(R^{2}+z^{2}-2 R z \cos \theta^{\prime}\right)^{3 / 2}}
$$

With $a=R^{2}+z^{2}$ and $b=2 R z$ the integral is

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{(a-b x)^{3 / 2}} & =\left.\frac{2}{b(a-b x)^{1 / 2}}\right|_{0} ^{1}=\frac{2}{b \sqrt{a-b}}-\frac{2}{b \sqrt{a}} \\
& =\frac{1}{R z \sqrt{(R-z)^{2}}}-\frac{1}{R z \sqrt{R^{2}+z^{2}}}
\end{aligned}
$$

and

$$
\Phi(z)=\Phi_{0} \frac{1}{2 z}(R+z)\left(1-\frac{R-z}{\sqrt{R^{2}+z^{2}}}\right) .
$$

(b) Special values:

$$
\begin{aligned}
& z=-R \Rightarrow \Phi(-R)=0, \\
& z=-\frac{R}{2} \Rightarrow \Phi\left(-\frac{R}{2}\right)=\Phi_{0}\left(-\frac{1}{2}\right)\left(1-\frac{3}{\sqrt{5}}\right)=0.17082 \Phi_{0} \\
& z=\frac{R}{2} \Rightarrow \Phi\left(\frac{R}{2}\right)=\Phi_{0}\left(\frac{3}{2}\right)\left(1-\frac{1}{\sqrt{5}}\right)=0.82918 \Phi_{0} \\
& z=R \Rightarrow \Phi(R)=\Phi_{0} \frac{2 R}{2 R}=\Phi_{0} \\
& z \rightarrow 0 \Rightarrow \Phi(0)=\Phi_{0} \frac{R}{2 z}\left(1-\frac{R-z}{R}\right) \rightarrow \frac{1}{2} \Phi_{0} .
\end{aligned}
$$

The plot is shown in the figure.

FIG. 1: Potential as function of z.

