Electrodynamics A (PHY 5346) Fall 2016 Solutions Test on Homework December 1.

1. Time in Minkowski space (from HW 5, set 2).
We use natural units, ¢ = 1, and give all results in units of seconds.
(a) It follows from ' = 4¢/5 = ¢t — 15 that the coordinates of By are (¢,x) = (75, 60).

(b) The proper time of B is then 7 = /12 — 22 = 45.

(c) At position Ay the time on the clock of A is 75 + 60 = 135.

2. Potential in a rectangular box (HW 26, set 8).

By separation of variables, we get
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The BC condition given in the problem is

®(x,y,c) = sin (M) sin (27Ty> + sin <37m) sin (Wy> _
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From this we find that only (n = 1,m = 2) and (n = 3,m = 1) contribute to the

expansion
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The same result is obtained by using the integral definitions of the coefficients and

Comparing to

we find

Ap =

performing the integrations.



3. Dielectric sphere (HW 41, set 12).

(a) We expand the potential into spherical harmonics. Due to the axial symmetry we

have only m = 0 contributions, which are Legendre polynomials.
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For r — oc0: & - —FEyz = —FEyr cosf. This implies that the only non-vanishing

coefficient B; is
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(b) Matching for the tangential BC 0F,/00 term by term (they are independent func-
tions of #), we find:
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Putting the [ > 2 equations together we get
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With this notation we have



Combining this with our other equation for A; gives
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Therefore,
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Note that the last term is the potential of a dipole. The electric fields are then
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(¢) The surface charge density is
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