Electrodynamics A (PHY 5346) Fall 2016 Solutions Test on Homework December 1.

1. Time in Minkowski space (from HW 5, set 2).

We use natural units, $c=1$, and give all results in units of seconds.
(a) It follows from $x^{1}=4 t / 5=t-15$ that the coordinates of B_{0} are $(t, x)=(75,60)$.
(b) The proper time of B is then $\tau=\sqrt{t^{2}-x^{2}}=45$.
(c) At position A_{2} the time on the clock of A is $75+60=135$.
2. Potential in a rectangular box (HW 26, set 8).

By separation of variables, we get

$$
\Phi(x, y, z)=\sum_{n m} A_{n m} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) \sinh \left(z \pi \sqrt{\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}}\right)
$$

The BC condition given in the problem is

$$
\Phi(x, y, c)=\sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi y}{b}\right)+\sin \left(\frac{3 \pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) .
$$

From this we find that only $(n=1, m=2)$ and $(n=3, m=1)$ contribute to the expansion

$$
\begin{aligned}
\Phi(x, y, z) & =A_{12} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi y}{b}\right) \sinh \left(z \pi \sqrt{\frac{1}{a^{2}}+\frac{4}{b^{2}}}\right) \\
& +A_{31} \sin \left(\frac{3 \pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) \sinh \left(z \pi \sqrt{\frac{9}{a^{2}}+\frac{1}{b^{2}}}\right) .
\end{aligned}
$$

Comparing to

$$
\Phi(x, y, c)=\sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi y}{b}\right)+\sin \left(\frac{3 \pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right)
$$

we find

$$
A_{31}=\frac{1}{\sinh \left(c \pi \sqrt{9 / a^{2}+1 / b^{2}}\right)} \text { and } A_{12}=\frac{1}{\sinh \left(c \pi \sqrt{1 / a^{2}+4 / b^{2}}\right)}
$$

The same result is obtained by using the integral definitions of the coefficients and performing the integrations.
3. Dielectric sphere (HW 41, set 12).
(a) We expand the potential into spherical harmonics. Due to the axial symmetry we have only $m=0$ contributions, which are Legendre polynomials.

$$
\begin{aligned}
& \text { Inside : } \quad \Phi_{\mathrm{in}}=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta), \\
& \text { Outside : } \Phi_{\mathrm{out}}=\sum_{l=0}^{\infty}\left[B_{l} r^{l}+C_{l} r^{-(l+1)}\right] P_{l}(\cos \theta) .
\end{aligned}
$$

For $r \rightarrow \infty: \Phi \rightarrow-E_{0} z=-E_{0} r \cos \theta$. This implies that the only non-vanishing coefficient B_{l} is

$$
B_{1}=-E_{0}
$$

BCs at $r=R$:

$$
\begin{aligned}
\text { Tangential : } & \left.\frac{1}{R} \frac{\partial \Phi_{\mathrm{in}}}{\partial \theta}\right|_{r=R}=\left.\frac{1}{R} \frac{\partial \Phi_{\mathrm{out}}}{\partial \theta}\right|_{r=R} \\
\text { Normal : } & \left.\epsilon_{1} \frac{\partial \Phi_{\mathrm{in}}}{\partial r}\right|_{r=R}=\left.\epsilon_{2} \frac{\partial \Phi_{\mathrm{out}}}{\partial r}\right|_{r=R}
\end{aligned}
$$

(b) Matching for the tangential BC $\partial P_{l} / \partial \theta$ term by term (they are independent functions of θ), we find:

$$
\begin{aligned}
A_{1} R= & B_{1} R+\frac{C_{1}}{R^{2}} \Rightarrow A_{1}=-E_{0}+\frac{C_{1}}{R^{3}} \\
& \text { and for } l \geq 2: \quad A_{l}=\frac{C_{l}}{R^{(2 l+1)}}
\end{aligned}
$$

Similarly we match for the normal BC P_{l} term by term and find:

$$
\begin{aligned}
\epsilon_{1} A_{1} & =-\epsilon_{2} E_{0}-2 \epsilon_{2} \frac{C_{1}}{R^{3}} \\
\text { and for } l \geq 2: \quad \epsilon_{2} l A_{l} & =-(l+1) \epsilon_{2} \frac{C_{l}}{R^{(2 l+1)}} .
\end{aligned}
$$

Putting the $l \geq 2$ equations together we get

$$
\frac{C_{l}}{R^{(2 l+1)}}=-\frac{(l+1) \epsilon_{2}}{l \epsilon_{1}} \frac{C_{l}}{R^{(2 l+1)}} \Rightarrow C_{l}=0, \quad l \geq 2 \Rightarrow A_{l}=0, \quad l \geq 2
$$

Let us define

$$
\epsilon=\frac{\epsilon_{1}}{\epsilon_{2}} .
$$

With this notation we have

$$
\epsilon A_{1}=-E_{0}-2 \frac{C_{1}}{R^{3}}
$$

Combining this with our other equation for A_{1} gives

$$
A_{1}=-\left(\frac{3}{\epsilon+2}\right) E_{0}, \quad C_{1}=\left(\frac{\epsilon-1}{\epsilon+2}\right) R^{3} E_{0}
$$

Therefore,

$$
\begin{aligned}
\Phi_{\mathrm{in}} & =-\left(\frac{3}{\epsilon+2}\right) E_{0} r \cos (\theta)=-\left(\frac{3}{\epsilon+2}\right) E_{0} z \\
\Phi_{\mathrm{out}} & =-E_{0} z+\left(\frac{\epsilon-1}{\epsilon+2}\right) E_{0} \frac{R^{3}}{r^{2}} \cos (\theta)
\end{aligned}
$$

Note that the last term is the potential of a dipole. The electric fields are then

$$
\begin{aligned}
\vec{E}_{\mathrm{in}} & =-\nabla \Phi_{\mathrm{in}}=\left(\frac{3}{\epsilon+2}\right) \vec{E}_{0} \\
\vec{E}_{\mathrm{out}} & =-\nabla \Phi_{\mathrm{out}}=\vec{E}_{0}-\left(\frac{\epsilon-1}{\epsilon+2}\right) R^{3}\left(\frac{r^{2} \vec{E}_{0}-3 \vec{r}\left(\vec{r} \cdot \vec{E}_{0}\right)}{r^{5}}\right)
\end{aligned}
$$

(c) The surface charge density is

$$
\begin{aligned}
\sigma_{\mathrm{pol}} & =\frac{1}{4 \pi}\left(E_{\mathrm{out}}^{r}-E_{\mathrm{in}}^{r}\right)=\frac{1}{4 \pi} \hat{r} \cdot\left(\vec{E}_{\mathrm{out}}-\vec{E}_{\mathrm{in}}\right) \\
& =\frac{1}{4 \pi} E_{0} \cos (\theta)\left[\left(1-\frac{3}{\epsilon+2}\right)-\left(\frac{\epsilon-1}{\epsilon+2}\right)(1-3)\right] \\
& =\frac{3}{4 \pi}\left(\frac{\epsilon-1}{\epsilon+2}\right) E_{0} \cos (\theta)
\end{aligned}
$$

