Electrodynamics A (PHY 5346) Fall 2016 Solutions Midterm October 11.

1. Spacetrip.

We only consider the first quarter (1 year) of the flight. The other results for t are the same due to symmetry. With $\beta=v / c$ the acceleration in the rest frame is given by

$$
\frac{g}{c}=\frac{d \beta}{d \tau}=\frac{d \zeta}{d \tau}
$$

where ζ is the rapidity. As rapidities are additive, the following equation holds in the earth frame:

$$
d \zeta(\tau)=\frac{d \zeta}{d \tau} d \tau=\frac{g}{c} d \tau
$$

With the initial condition $\zeta(0)=0$ this integrates to

$$
\zeta=\int_{0}^{\zeta} d \zeta^{\prime}=\frac{g}{c} \int_{0}^{\tau} d \tau^{\prime}=\frac{g}{c} \tau
$$

The age of the twin on earth follows from $d t^{\prime}=\cosh (\zeta) d \tau^{\prime}$:

$$
\int_{0}^{t} d t^{\prime}=t=\int_{0}^{\tau} \cosh \left[\zeta\left(\tau^{\prime}\right)\right] d \tau^{\prime}=\int_{0}^{\tau} \cosh \left[\frac{g}{c} \tau^{\prime}\right] d \tau^{\prime}=\frac{c}{g} \sinh \left[\frac{g}{c} \tau\right] .
$$

Inserting $\tau=1$ year $=365 \times 24 \times 3600[s], c=3 \times 10^{8}[\mathrm{~m} / \mathrm{s}]$ and $g=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$, we find $t=1.187$ years for a quarter of the trip and 4.748 years for the entire trip.

Distance traveled.
Seen from earth: maximum distance $=2 x_{1}$ with

$$
\begin{aligned}
x_{1} & =\int_{0}^{t_{1}} v(t) d t=\int_{0}^{\tau_{1}} \cosh [\zeta(\tau)] v(\tau) d \tau \\
& =c \int_{0}^{\tau_{1}} \sinh \left(\frac{g \tau}{c}\right) d \tau=\frac{c^{2}}{g}\left[\cosh \left(\frac{g \tau_{1}}{c}\right)-1\right]
\end{aligned}
$$

Numerical values: $x_{1}=0.563$ light years, maximum distance $=1.126$ light years.

2. Lorentz invariance of anti-symmetry

$$
\begin{gathered}
F^{\prime \alpha \beta}=a^{\alpha}{ }_{\hat{\alpha}} a^{\beta}{ }_{\hat{\beta}} F^{\hat{\alpha} \hat{\beta}} \\
F^{\prime \beta \alpha}=a_{\hat{\alpha}}^{\beta} a_{\hat{\beta}}^{\alpha} F^{\hat{\alpha} \hat{\beta}}=-a_{\hat{\alpha}}^{\beta} a_{\hat{\beta}}^{\alpha} F^{\hat{\beta} \hat{\alpha}}=-a_{\hat{\alpha}}^{\alpha} a_{\hat{\beta}}^{\beta} F^{\hat{\alpha} \hat{\beta}}=-F^{\prime \alpha \beta} .
\end{gathered}
$$

3. Some electromagnetic invariants.

From the lecture notes (1.161), (1.162):

$$
\left(F^{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & -E^{x} & -E^{y} & -E^{z} \\
E^{x} & 0 & -B^{z} & B^{y} \\
E^{y} & B^{z} & 0 & -B^{x} \\
E^{z} & -B^{y} & B^{x} & 0
\end{array}\right), \quad\left(F_{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & E^{x} & E^{y} & E^{z} \\
-E^{x} & 0 & -B^{z} & B^{y} \\
-E^{y} & B^{z} & 0 & -B^{x} \\
-E^{z} & -B^{y} & B^{x} & 0
\end{array}\right)
$$

and, therefore,

$$
F_{\alpha \beta} F^{\alpha \beta}=2\left(\vec{B}^{2}-\vec{E}^{2}\right) .
$$

Next, from (1.164):

$$
\left({ }^{*} F^{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & -B^{x} & -B^{y} & -B^{z} \\
B^{x} & 0 & E^{z} & -E^{y} \\
B^{y} & -E^{z} & 0 & E^{x} \\
B^{z} & E^{y} & -E^{x} & 0
\end{array}\right) \quad\left({ }^{*} F_{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & B^{x} & B^{y} & B^{z} \\
-B^{x} & 0 & E^{z} & -E^{y} \\
-B^{y} & -E^{z} & 0 & E^{x} \\
-B^{z} & E^{y} & -E^{x} & 0
\end{array}\right)
$$

and, therefore,

$$
F_{\alpha \beta}{ }^{*} F^{\alpha \beta}=-4 \vec{E} \cdot \vec{B}, \quad{ }^{*} F_{\alpha \beta}{ }^{*} F^{\alpha \beta}=2\left(\vec{E}^{2}-\vec{B}^{2}\right) .
$$

