Mathematical Physics - PHZ 3113
Classwork 8 (February 27, 2013)
Cylindrical Coordinates

1. Use cylindrical coordinates to calculate the area of a circle of radius R.
2. Calculate

$$
\nabla \times \hat{z} \ln (\rho)
$$

in cylindrical coordinates.
3. Show Oersted's law

$$
\oint \vec{H} \cdot d \vec{r}=I
$$

for the magnetic potential

$$
\begin{aligned}
\vec{A} & =-\hat{z} \frac{\mu_{0} I}{2 \pi} \ln (\rho), \quad \vec{B}=\nabla \times \vec{A} \\
\vec{H} & =\mu_{0}^{-1} \vec{B}
\end{aligned}
$$

4. Find the acceleration \vec{a} in cylindrical coordinates.

Mathematical Physics - PHZ 3113

Classwork 9 (March 1, 2013)
 Cylindrical Coordinates

5. Completion of the square: We have

$$
x^{2}+b x+c
$$

and want this in the form

$$
x^{\prime 2}+c^{\prime}
$$

What are the values of x^{\prime} and c^{\prime} ?
6. In cylindrical coordinates the equation of an ellipse is given by

$$
\frac{p}{\rho}=1+\epsilon \cos (\phi), \quad p>0
$$

with Cartesian coordinates $x=\rho \cos (\phi)$ and $y=\rho \sin (\phi)$. Assume $0<e<1$ for the eccentricity and transform the solution into the form

$$
\frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime} 2}{b^{2}}=1
$$

This means, derive the definitions of x^{\prime}, y^{\prime}, major half-axis a and minor half-axis b in terms of x, y, p and ϵ.
7. Use the definition

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

to calculate the area of an ellipse. Hint: Make a substitution, so that it becomes reduced to the area of a circle.

