Mathematical Physics - PHZ 3113 Curl Classwork (February 1, 2013)

1. Use the Levi-Civita tensor to calculate $\nabla \times \vec{r}$, where \vec{r} is the position vector.
2. Calculate $\nabla \times \vec{r} f(r)$, where \vec{r} is the position vector and $r=|\vec{r}|$.
3. Use the Levi-Civita tensor to calculate $\nabla \times \nabla f$, where f is an arbitrary scalar function.
4. Derive the wave equation for the magnetic field \vec{B} from Maxwell's equations in vacuum

$$
\begin{array}{r}
\nabla \cdot \vec{B}=0, \quad \nabla \cdot \vec{E}=0 \\
\nabla \times \vec{B}=\epsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}, \quad \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\text { 5. Calculate } \nabla \times \vec{F} \text { for } \vec{F}=-\hat{x}_{1} x_{2}+\hat{x}_{2} x_{1} .
\end{array}
$$

