Mathematical Physics - PHZ 3113
Curl; Vector Integration Homework (February 7, 2013)
The dual of the Euclidean electromagnetic field tensor is defined by

$$
\begin{equation*}
{ }^{*} F_{\alpha \beta}=\frac{1}{2} \epsilon_{\alpha \beta \mu \nu} F_{\mu \nu} \tag{1}
\end{equation*}
$$

where the indices run from 1 to 4 , the Einstein convention is used and $F_{\mu \nu}$ is an antisymmetric (i.e., $F_{\mu \nu}=-F_{\nu \mu}$) rank two tensor
$\left(F_{\mu \nu}\right)=\left(\begin{array}{cccc}0 & F_{12} & F_{13} & F_{14} \\ -F_{12} & 0 & F_{23} & F_{24} \\ -F_{13} & -F_{23} & 0 & F_{34} \\ -F_{14} & -F_{24} & -F_{34} & 0\end{array}\right)$.

1. Calculate the elements of ${ }^{*} F_{\alpha \beta}$ in terms of the independent elements of $F_{\mu \nu}$ and write ${ }^{*} F_{\alpha \beta}$ as a matrix.
2. The electromagnetic field tensor can be written in form of derivatives of a 4-potential

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{2}
\end{equation*}
$$

Use this expression to proof the homogeneous Maxwell equations in their form

$$
\begin{equation*}
\partial_{\alpha}{ }^{*} F_{\alpha \beta}=0 \tag{3}
\end{equation*}
$$

Remark: Therefore (2) implies that no magnetic monopoles exist, because (3) includes (upon identification of the \vec{E} and \vec{B} fields) the relation $\nabla \cdot \vec{B}=0$.

