Mathematical Physics - PHZ 3113

Levi-Civita Tensor 1

(January 11, 2013)

Group \#

Participating students (print):

1. Use binary numbers 0,1 and write down the numbers 0 to 3 .

0
1
2
3
Add one more column in which you substitute $0 \rightarrow 1,1 \rightarrow 2$ and one last column in which you count the decimal numbers from 1 to 4.
2. Use numbers with base 3 and symbols 0 , 1,2 to write down the numbers 0 to 26 .
0
1
2
3
4
5
6
9
10
11
12
13
14
15
16
17
18
19
20
21

Add one more column in which you substitute $n \rightarrow n+1$ for $n=0,1,2$ and one last column in which you count the decimal numbers from 1 to 27 .
3. Write down the permutations of 12 . How many permutations of 12 are there?
4. Write down the transposition of 12 .
5. Use the permutations of 12 to write down the permutations of 123 by starting in each case with 3 on the right and transposing the number 3 with its left neighbor until this is no longer possible. How many permutations of 123 are there?
6. Along the same lines: Use the permutations of 123 to write down the permutations of 1234 . How many permutations
of 1234 are there?
7. Proof that there are n ! permutions π_{1}, \ldots, π_{n} of $1, \ldots, n$.
8. With $i_{1}=1, \ldots, n, i_{2}=1, \ldots, n, \ldots, i_{n}=$ $1, \ldots, n$ the definition of the Levi-Civita tensor is
$\epsilon_{i_{1}, \ldots, i_{n}}=\left\{\begin{array}{l}+1 \text { for } i_{1}, \ldots, i_{n} \text { even permutation, } \\ -1 \text { for } i_{1}, \ldots, i_{n} \text { odd permutation, } \\ 0 \text { for } i_{1}, \ldots, i_{n} \text { no permutation. }\end{array}\right.$
A permutation i_{1}, \ldots, i_{n} is even, when it is generated by an even number of transpositions of $1, \ldots, n$ and odd, when it is generated by an odd number of transpositions of $1, \ldots, n$.
How many non-zero elements are there?
How many non-zero positive elements are there?
9. Write down all elements of the Levi-Civita tensor for $n=2$.

10. Write down all elements of the Levi-Civita tensor for $n=3$.

11. Write down all non-zero elements of the Levi-Civita tensor for $n=4$.
