Mathematical Physics - PHZ 3113
Vectors 1 (Classwork January 7, 2013)

Group \#

Participating students (print):

$$
\text { In the following } i=1, \ldots, n, j=1, \ldots, n \text {. }
$$

1. Let \hat{x}_{i} and \hat{x}_{j} be Cartesian unit vectors.

It holds the relation

$$
\begin{equation*}
\hat{x}_{i} \cdot \hat{x}_{j}= \tag{1}
\end{equation*}
$$

Name the r.h.s. quantity:
2. Write down n-dimensional ($n D$ henceforth) column vectors.

$$
\vec{a}=\quad \vec{b}=
$$

3. Write down the scalar product.

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=\sum_{i=}^{\sum} \tag{3}
\end{equation*}
$$

4. Write down the scalar products

$$
\vec{a} \cdot \vec{a}=\quad \vec{b} \cdot \vec{b}=
$$

5. Give the definition of the magnitude of \vec{a}.

$$
\begin{equation*}
|\vec{a}|= \tag{5}
\end{equation*}
$$

6. Express the unit vectors \hat{a} and \hat{b} through previously defined quantities.

$$
\hat{a}=
$$

$$
\begin{equation*}
\hat{b}= \tag{6}
\end{equation*}
$$

7. Use \vec{b} to find a unit vector that is perpendicular to \hat{a}.

$$
\begin{equation*}
\vec{a}_{\perp}= \tag{7}
\end{equation*}
$$

Which condition has \vec{b} to fulfill, so that this is possible?

Show $\vec{a}_{\perp} \cdot \vec{a}=0$.
8. Expand the vectors \vec{a} and \vec{b} in terms of the unit vectors \hat{x}_{i}.

$$
\begin{equation*}
\vec{a}=\sum_{i=1}^{n} \quad \vec{b}=\sum_{j=1}^{n} \tag{8}
\end{equation*}
$$

9. Calculate the scalar products for the r.h. sides of the previous equation and show that the results agrees with Eq. (3).

$$
\vec{a} \cdot \vec{b}=
$$

