Mathematical Physics - PHZ 3113
Vectors 2 (Classwork January 9, 2013)

Group \#

Participating students (print):

1. Write down the commutative law of vector addition

$$
\begin{equation*}
\vec{a}+\vec{b}= \tag{1}
\end{equation*}
$$

2. Write down the associative law of vector addition

$$
\begin{equation*}
(\vec{a}+\vec{b})+\vec{c}= \tag{2}
\end{equation*}
$$

3 . How is the positively chosen angle θ between two $n D$ vectors \vec{a}, \vec{b} defined?

$$
\begin{equation*}
\cos (\theta)= \tag{3}
\end{equation*}
$$

4. Write down the velocity for a $n D$ position vector

$$
\vec{r}=\left(\begin{array}{c}
x_{1}(t) \tag{4}\\
\cdot \\
\cdot \\
\cdot \\
x_{n}(t)
\end{array}\right), \quad \vec{v}=
$$

5. Draw (millimeter paper provided) $\vec{r}(t)=$

 $\vec{r}_{0}+\vec{v} t$ with (in arbitrary units)$$
\vec{r}_{0}=\binom{2}{4}, \quad \vec{v}_{0}=\binom{4}{2}, \quad 0 \leq t \leq 2
$$

6. Calculate the work (in SI units $[J]$) for

$$
\begin{equation*}
\vec{F}=\binom{2}{1}[N], \quad \triangle \vec{r}=\binom{1}{3}[m] \tag{6}
\end{equation*}
$$

$W=$
7. Describe the the surface swept out by \vec{r} for

$$
\begin{align*}
& (\vec{r}-\vec{a}) \cdot \vec{a}=0, \tag{8}\\
& (\vec{r}-\vec{a}) \cdot \vec{r}=0, \tag{9}
\end{align*}
$$

where \vec{a} is a constant non-zero $n D$ vector (compare exercise 1.2.2 of the book).
The trick is to write \vec{r} as
$\vec{r}=$

Continue freely with the calculations for (8) and (9).

