Mathematical Physics - PHZ 3113

Classwork 8 (February 27, 2013) Cylindrical Coordinates

1. Use cylindrical coordinates to calculate the area of a circle of radius R.
Solution:

$$
\begin{aligned}
A & =\int_{S_{\text {circle }}} d^{2} x=\int_{x^{2}+y^{2} \leq R^{2}} d x d y \\
& =\int_{0}^{2 \pi} d \phi \int_{0}^{R} \rho d \rho=2 \pi \frac{1}{2} R^{2}=\pi R^{2}
\end{aligned}
$$

2. Calculate

$$
\nabla \times \hat{z} \ln (\rho)
$$

in cylindrical coordinates.
Solution:

$$
\nabla \times \hat{z} \ln (\rho)=\hat{\rho} \times \hat{z} \frac{1}{\rho}=-\frac{\hat{\phi}}{\rho}
$$

3. Show Oersted's law

$$
\oint \vec{H} \cdot d \vec{r}=I
$$

for the magnetic potential

$$
\begin{aligned}
\vec{A} & =-\hat{z} \frac{\mu_{0} I}{2 \pi} \ln (\rho), \quad \vec{B}=\nabla \times \vec{A} \\
\vec{H} & =\mu_{0}^{-1} \vec{B}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \vec{H}=\frac{I \hat{\phi}}{2 \pi \rho} \\
& \oint \vec{H} \cdot d \vec{r}=\int_{0}^{2 \pi} \rho d \phi \frac{I}{2 \pi \rho}=I
\end{aligned}
$$

4. Find the acceleration \vec{a} in cylindrical coordinates.

Solution:

$$
\begin{aligned}
& \vec{v}=\dot{\rho} \hat{\rho}+\rho \dot{\phi} \hat{\phi}+\dot{z} \hat{z} \\
& \vec{a}=\dot{\vec{v}}=\ddot{\rho} \hat{\rho}+\dot{\rho} \dot{\hat{\rho}}+\dot{\rho} \dot{\phi} \hat{\phi}+\rho \ddot{\phi} \hat{\phi}+\rho \dot{\phi} \dot{\hat{\phi}}+\ddot{z} \hat{z} \\
& \dot{\hat{\rho}}=\dot{\phi} \hat{\phi}, \quad \dot{\hat{\phi}}=-\dot{\phi} \hat{\rho}, \\
& \vec{a}=\left(\ddot{\rho}-\rho \dot{\phi}^{2}\right) \hat{\rho}+(\rho \ddot{\phi}+2 \dot{\rho} \dot{\phi}) \hat{\phi}+\dot{z} \hat{z}
\end{aligned}
$$

Mathematical Physics - PHZ 3113

Classwork 9 (March 1, 2013)
 Cylindrical Coordinates

5. Completion of the square: We have

$$
x^{2}+b x+c
$$

and want this in the form

$$
x^{\prime 2}+c^{\prime}
$$

What are the values of x^{\prime} and c^{\prime} ?
Solution:

$$
x^{\prime}=x+\frac{b}{2}, \quad c^{\prime}=c-\frac{b^{2}}{4}
$$

6. In cylindrical coordinates the equation of an ellipse is given by

$$
\frac{p}{\rho}=1+\epsilon \cos (\phi), \quad p>0
$$

with Cartesian coordinates $x=\rho \cos (\phi)$ and $y=\rho \sin (\phi)$. Assume $0<\epsilon<1$ for
the eccentricity and transform the solution into the form

$$
\frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime} 2}{b^{2}}=1
$$

This means, derive the definitions of x^{\prime}, y^{\prime}, major half-axis a and minor half-axis b in terms of x, y, p and ϵ.

Solution: Using $\cos \theta=x / \rho$, the initial equation becomes

$$
\begin{aligned}
p & =\rho(1+\epsilon \cos \theta)=\rho(1+\epsilon x / \rho) \\
& =\rho+\epsilon x \text { or } \rho=p-\epsilon x .
\end{aligned}
$$

Squaring both sides of the last equation:

$$
x^{2}+y^{2}=p^{2}-2 p \epsilon x+\epsilon^{2} x^{2} .
$$

Bringing all terms with x or y to one side,

$$
\begin{gathered}
x^{2}\left(1-\epsilon^{2}\right)+2 p \epsilon x+y^{2}=p^{2} \\
x^{2}+\frac{2 p \epsilon}{1-\epsilon^{2}} x+\frac{y^{2}}{1-\epsilon^{2}}=\frac{p^{2}}{1-\epsilon^{2}}
\end{gathered}
$$

According to the recipe for completion of the square we substitute

$$
x^{\prime}=x+\frac{p \epsilon}{1-\epsilon^{2}}
$$

and obtain

$$
\begin{aligned}
x^{\prime 2}+\frac{y^{2}}{1-\epsilon^{2}} & =\frac{p^{2}}{1-\epsilon^{2}}+\left(\frac{p \epsilon}{1-\epsilon^{2}}\right)^{2} \\
\frac{p^{2}\left(1-\epsilon^{2}\right)+p^{2} \epsilon^{2}}{\left(1-\epsilon^{2}\right)^{2}} & =\frac{p^{2}}{\left(1-\epsilon^{2}\right)^{2}} .
\end{aligned}
$$

Multiplying with $\left(1-\epsilon^{2}\right)^{2} / p^{2}$, this becomes

$$
x^{\prime 2} \frac{\left(1-\epsilon^{2}\right)^{2}}{p^{2}}+y^{2} \frac{1-\epsilon^{2}}{p^{2}}=1
$$

With the definitions

$$
a=\frac{p}{1-\epsilon^{2}} \quad \text { and } \quad b=\frac{p}{\sqrt{1-\epsilon^{2}}}
$$

and $y^{\prime}=y$ this reads

$$
\left(\frac{x^{\prime}}{a}\right)^{2}+\left(\frac{y^{\prime}}{b}\right)^{2}=1
$$

7. Use the definition

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

to calculate the area of an ellipse. Hint: Make a substitution, so that it becomes reduced to the area of a circle.

Solution: We want to calculate

$$
A=\int_{\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1} d x d y
$$

With the substitution $y=b y^{\prime} / a$ this becomes

$$
A=\frac{b}{a} \int_{x^{2}+y^{\prime 2} \leq a^{2}} d x d y^{\prime}=\frac{b}{a} \pi a^{2}=\pi a b
$$

