Mathematical Physics - PHZ 3113 Curl Classwork (February 1, 2013)

1. Use the Levi-Civita tensor to calculate $\nabla \times \vec{r}$, where \vec{r} is the position vector. Solution (with Einstein convention):

$$
\begin{aligned}
\nabla \times \vec{r} & =\epsilon_{i j k} \hat{x}_{i} \partial_{j} x_{k}=\epsilon_{i j k} \hat{x}_{i} \delta_{j k} \\
& =\epsilon_{i k k} \hat{x}_{i}=0
\end{aligned}
$$

2. Calculate $\nabla \times \vec{r} f(r)$, where \vec{r} is the position vector and $r=|\vec{r}|$.
Solution:

$$
\begin{aligned}
\nabla \times \vec{r} f(r) & =f(r) \nabla \times \vec{r}+[\nabla f(r)] \times \vec{r} \\
& =\frac{d f(r)}{d r} \hat{r} \times \vec{r}=0
\end{aligned}
$$

3. Use the Levi-Civita tensor to calculate $\nabla \times \nabla f$, where f is an arbitrary scalar function.
Solution (with Einstein convention):

$$
\nabla \times \nabla f=\epsilon_{i j k} \hat{x}_{i} \partial_{j} \partial_{k} f=0
$$

because $\epsilon_{i j k}$ is anti-symmetric and $\partial_{j} \partial_{k}$ is symmetric in the indices j and k.
4. Derive the wave equation for the magmetic field \vec{B} from Maxwell's equations in vacuum

$$
\begin{gathered}
\nabla \cdot \vec{B}=0, \quad \nabla \cdot \vec{E}=0 \\
\nabla \times \vec{B}=\epsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}, \quad \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
\end{gathered}
$$

Solution:

$$
\begin{aligned}
\nabla \times(\nabla \times \vec{B}) & =\epsilon_{0} \mu_{0} \frac{\partial}{\partial t} \nabla \times \vec{E} \\
\nabla(\nabla \cdot \vec{B})-\nabla^{2} \vec{B} & =-\epsilon_{0} \mu_{0}\left(\frac{\partial}{\partial t}\right)^{2} \vec{B} \\
\nabla^{2} \vec{B} & =\frac{1}{c^{2}}\left(\frac{\partial}{\partial t}\right)^{2} \vec{B}
\end{aligned}
$$

5. Calculate $\nabla \times \vec{F}$ for $\vec{F}=-\hat{x}_{1} x_{2}+\hat{x}_{2} x_{1}$. Solution (with Einstein convention):

$$
\begin{aligned}
\nabla \times \vec{F} & =-\epsilon_{i j 1} \hat{x}_{i} \partial_{j} x_{2}+\epsilon_{i j 2} \hat{x}_{i} \partial_{j} x_{1} \\
& =-\epsilon_{i j 1} \hat{x}_{i} \delta_{j 2}+\epsilon_{i j 2} \hat{x}_{i} \delta_{j 1} \\
& =-\epsilon_{i 21} \hat{x}_{i}+\epsilon_{i 12} \hat{x}_{i} \\
& =-\epsilon_{321} \hat{x}_{3}+\epsilon_{312} \hat{x}_{3}=2 \hat{x}_{3}
\end{aligned}
$$

