Mathematical Physics - PHZ 3113
Curl; Vector Integration Homework (February 7, 2013)

The dual of the Euclidean electromagnetic field tensor is defined by

$$
\begin{equation*}
{ }^{*} F_{\alpha \beta}=\frac{1}{2} \epsilon_{\alpha \beta \mu \nu} F_{\mu \nu} \tag{1}
\end{equation*}
$$

where the indices run from 1 to 4 , the Einstein convention is used and $F_{\mu \nu}$ is an anti$\operatorname{symmetric}\left(\right.$ i.e., $F_{\mu \nu}=-F_{\nu \mu}$) rank two tensor
$\left(F_{\mu \nu}\right)=\left(\begin{array}{cccc}0 & F_{12} & F_{13} & F_{14} \\ -F_{12} & 0 & F_{23} & F_{24} \\ -F_{13} & -F_{23} & 0 & F_{34} \\ -F_{14} & -F_{24} & -F_{34} & 0\end{array}\right)$.

1. Calculate the elements of ${ }^{*} F_{\alpha \beta}$ in terms of the independent elements of $F_{\mu \nu}$ and write ${ }^{*} F_{\alpha \beta}$ as a matrix.
Solution:
${ }^{*} F_{12}=\frac{1}{2}\left(\epsilon_{1234} F_{34}+\epsilon_{1243} F_{43}\right)=+F_{34}$

$$
\begin{aligned}
& { }^{*} F_{13}=\frac{1}{2}\left(\epsilon_{1324} F_{24}+\epsilon_{1342} F_{42}\right)=-F_{24} \\
& { }^{*} F_{14}=\frac{1}{2}\left(\epsilon_{1423} F_{23}+\epsilon_{1432} F_{32}\right)=+F_{23} \\
& { }^{*} F_{23}=\frac{1}{2}\left(\epsilon_{2314} F_{14}+\epsilon_{2341} F_{41}\right)=+F_{14} \\
& { }^{*} F_{24}=\frac{1}{2}\left(\epsilon_{2413} F_{13}+\epsilon_{2431} F_{31}\right)=-F_{13} \\
& { }^{*} F_{34}=\frac{1}{2}\left(\epsilon_{3412} F_{12}+\epsilon_{3421} F_{21}\right)=+F_{12} \\
& \left({ }^{*} F_{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & +F_{34} & -F_{24} & +F_{23} \\
-F_{34} & 0 & +F_{14} & -F_{13} \\
+F_{24} & -F_{14} & 0 & +F_{12} \\
-F_{23} & +F_{13} & -F_{12} & 0
\end{array}\right) .
\end{aligned}
$$

2. The electromagnetic field tensor can be written in form of derivatives of a 4-potential

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} . \tag{2}
\end{equation*}
$$

Use this expression to proof the homogeneous Maxwell equations in their form

$$
\begin{equation*}
\partial_{\alpha}{ }^{*} F_{\alpha \beta}=0 . \tag{3}
\end{equation*}
$$

Solution:

$$
\begin{aligned}
\partial_{\alpha}^{*} F_{\alpha \beta} & =\frac{1}{2} \epsilon_{\alpha \beta \mu \nu} \partial_{\alpha} F_{\mu \nu} \\
& =\frac{1}{2} \epsilon_{\alpha \beta \mu \nu} \partial_{\alpha}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \epsilon_{\alpha \beta \mu \nu} \partial_{\alpha} \partial_{\mu} A_{\nu}=0 \\
& \epsilon_{\alpha \beta \mu \nu} \partial_{\alpha} \partial_{\nu} A_{\mu}=0
\end{aligned}
$$

because each time an antisymmetric tensor is contracted with a symmetric tensor $\left(\partial_{\alpha} \partial_{\mu}\right.$ and $\left.\partial_{\alpha} \partial_{\mu}\right)$. This proofs (3).

Remark: Therefore (2) implies that no magnetic monopoles exist, because (3) includes (upon identification of the \vec{E} and \vec{B} fields) the relation $\nabla \cdot \vec{B}=0$.

