Mathematical Physics - PHZ 3113

Levi-Cevita Tensor 1

(January 11, 2013)

Group \#

Participating students (print):

1. Use binary numbers 0,1 and write down the numbers 0 to 3 . Add one more column in which you substitute $0 \rightarrow 1,1 \rightarrow$ 2 and one last column in which you count the decimal numbers from 1 to 4 .

000111
101122
210213
311224
2. Use numbers with base 3 and symbols $0,1,2$ to write down the numbers 0 to 26. Add one more column in which you
substitute $n \rightarrow n+1$ for $n=0,1,2$ and one last column in which you count the decimal numbers from 1 to 27.

00001111
10011122
20021133
30101214
40111225
50121236
60201317
70211328
80221339
910021110
1010121211
1110221312
1211022113
1311122214
1411222315
1512023116
1612123217
1712223318

1820031119
1920131220
2020231321
2121032122
2221132223
2321232324
2422033125
2522133226
2622233327
3. Write down the permutations of 12 .

How many permutations of 12 are there?
1221 there are 2 permuations. (1)
4. Write down the transposition of 12 .

$$
\begin{equation*}
21 \tag{2}
\end{equation*}
$$

5. Use the permutations of (1) to write down the permutations of 123 by starting in each case with 3 on the right and transposing the number 3 with its left neighbor until this is no longer possible. How
many permutations of 123 are there?

$$
\begin{array}{lll}
123 & 132 & 312 \tag{3}\\
213 & 231 & 321
\end{array}
$$

There are 6 permutations.
6. Along the same lines: Use the permutations of (3) to write down the permutations of 1234 . How many permutations of 1234 are there?

$$
\begin{array}{llll}
1234 & 1243 & 1423 & 4123 \tag{4}\\
1324 & 1342 & 1432 & 4132 \\
3124 & 3142 & 3412 & 4312 \\
2134 & 2143 & 2413 & 4213 \\
2314 & 2341 & 2431 & 4231 \\
3214 & 3241 & 3421 & 4321
\end{array}
$$

There are $24=4$! permutations.
7. Proof that there are n ! permutions π_{1}, \ldots, π_{n} of $1, \ldots, n$.

Thee proof is by induction. Assume that
there are $(n-1)$! permutations for

$$
\pi_{1}, \ldots, \pi_{n-1}
$$

as we have verified up to $n-1=4$. From each of these permuations we get n new permuations by starting with the number n on the right side and transposing it in ($n-1$) steps to the left side:

$$
\begin{aligned}
& \pi_{1}, \ldots, \pi_{n-1}, n \\
& \pi_{1}, \ldots, n, \pi_{n-1}
\end{aligned}
$$

$$
\pi_{1}, n, \ldots, \pi_{n-1}
$$

$$
n, \pi_{1}, \ldots, \pi_{n-1}
$$

Hence there are

$$
(n-1)!n=n!
$$

permuations of the numbers $1, \ldots, n$.
8. With

$$
\begin{aligned}
i_{1}= & 1, \ldots, n \\
i_{2}= & 1, \ldots, n \\
& \ldots \\
i_{n}= & 1, \ldots, n
\end{aligned}
$$

the definition of the Levi-Cevita tensur is
$\epsilon_{i_{1}, \ldots, i_{n}}=\left\{\begin{array}{l}+1 \text { for } i_{1}, \ldots, i_{n} \text { even permutation, } \\ -1 \text { for } i_{1}, \ldots, i_{n} \text { odd permutation, } \\ 0 \text { for } i_{1}, \ldots, i_{n} \text { no permutation }\end{array}\right.$
(5)

A permutation i_{1}, \ldots, i_{n} is even, when it is generated by an even number of transpositions of $1, \ldots, n$ and odd, when it is generated by an odd number of transpositions of $1, \ldots, n$.
How many non-zero elements are there?

$$
\begin{equation*}
n! \tag{6}
\end{equation*}
$$

How many positive elements are there?

$$
\begin{equation*}
n!/ 2 \tag{7}
\end{equation*}
$$

9. Write down all elements of the Levi-Cevita tensor for $n=2$.

$$
\begin{align*}
\epsilon_{11}=0 & \epsilon_{12}=+1 \\
\epsilon_{21}=-1 & \epsilon_{22}=0 \tag{8}
\end{align*}
$$

10. Write down all elements of the Levi-Cevita tensor for $n=3$.

$$
\begin{aligned}
\text { 1. } & \epsilon_{111}=0 \\
\text { 2. } & \epsilon_{112}=0 \\
\text { 3. } & \epsilon_{113}=0 \\
\text { 4. } \quad & \epsilon_{121}=0 \\
\text { 5. } & \epsilon_{122}=0 \\
\text { 6. } & \epsilon_{123}=+1 \\
\text { 7. } & \epsilon_{131}=0 \\
\text { 8. } & \epsilon_{132}=-1 \\
\text { 9. } & \epsilon_{133}=0 \\
\text { 10. } & \epsilon_{211}=0 \\
\text { 11. } & \epsilon_{212}=0 \\
\text { 12. } & \epsilon_{213}=-1 \\
\text { 13. } & \epsilon_{221}=0 \\
\text { 14. } & \epsilon_{222}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 15. } \quad \epsilon_{223}=0 \\
& \text { 16. } \quad \epsilon_{231}=+1 \\
& \text { 17. } \quad \epsilon_{232}=0 \\
& \text { 18. } \quad \epsilon_{233}=0 \\
& \text { 19. } \quad \epsilon_{311}=0 \\
& \text { 20. } \quad \epsilon_{312}=+1 \\
& 21 . \\
& \text { 22. } \quad \epsilon_{313}=0 \\
& \text { 23. } \quad \epsilon_{321}=-1 \\
& \text { 24. } \quad . \quad \epsilon_{323}=0 \\
& \text { 25. } \quad \epsilon_{331}=0 \\
& \text { 26. } \quad \epsilon_{332}=0 \\
& \text { 27. } \quad \epsilon_{333}=0
\end{aligned}
$$

11. Write down all non-zero elements of the Levi-Cevita tensor for $n=4$.
12. $\epsilon_{1234}=+1$
13. $\epsilon_{1243}=-1$
14. $\epsilon_{1423}=+1$
15. $\epsilon_{4123}=-1$

$$
\begin{aligned}
& \text { 5. } \epsilon_{1324}=-1 \\
& \text { 6. } \epsilon_{1342}=+1 \\
& \text { 7. } \epsilon_{1432}=-1 \\
& \text { 8. } \epsilon_{4132}=+1 \\
& \text { 9. } \epsilon_{3124}=+1 \\
& \text { 10. } \epsilon_{3142}=-1 \\
& \text { 11. } \epsilon_{3412}=+1 \\
& \text { 12. } \epsilon_{4312}=-1 \\
& \text { 13. } \epsilon_{2134}=-1 \\
& \text { 14. } \epsilon_{2143}=+1 \\
& \text { 15. } \epsilon_{2413}=-1 \\
& \text { 16. } \epsilon_{4213}=+1 \\
& \text { 17. } \epsilon_{2314}=+1 \\
& \text { 18. } \epsilon_{2341}=-1 \\
& \text { 19. } \epsilon_{2431}=+1 \\
& \text { 20. } \epsilon_{4213}=-1
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 21. } & \epsilon_{3214}=-1 \\
\text { 22. } & \epsilon_{3241}=+1 \\
\text { 23. } & \epsilon_{3241}=-1 \\
\text { 24. } & \epsilon_{4321}=+1
\end{array}
$$

