Mathematical Physics — PHZ 3113 Levi-Cevita Tensor 1 (January 11, 2013)

Group #

Participating students (print):

- Use binary numbers 0, 1 and write down the numbers 0 to 3. Add one more column in which you substitute 0 → 1, 1 → 2 and one last column in which you count the decimal numbers from 1 to 4.
 - 0 00 11 1
 - $1 \ 01 \ 12 \ 2$
 - 2 10 21 3
 - 3 11 22 4
- 2. Use numbers with base 3 and symbols0, 1, 2 to write down the numbers 0 to26. Add one more column in which you

substitute $n \rightarrow n+1$ for n = 0, 1, 2 and one last column in which you count the decimal numbers from 1 to 27.

- $0 \ 000 \ 111 \ 1$
- $1 \ 001 \ 112 \ 2$
- 2 002 113 3
- 3 010 121 4
- 4 011 122 5
- ± UII 122 J
- $5\ 012\ 123\ 6$
- $6\ 020\ 131\ 7$
- 7 021 132 8
- 8 022 133 9
- 9 100 211 10
- 10 101 212 11
- 11 102 213 12
- 12 110 221 13
- 13 111 222 14
- 14 112 223 15
- 15 120 231 16
- 16 121 232 17
- 17 122 233 18

- 182003111919201312202020231321212103212222211322232321232324242203312525221332262622233327
- 3. Write down the **permutations** of 12. How many permutations of 12 are there?
 - $12 \quad 21$ there are 2 permutaions. (1)
- 4. Write down the transposition of 12.

21 (2)

5. Use the permutations of (1) to write down the permutations of 123 by starting in each case with 3 on the right and transposing the number 3 with its left neighbor until this is no longer possible. How many permutations of 123 are there?

123	132	312	(3)
213	231	321	

There are 6 permutations.

6. Along the same lines: Use the permutations of (3) to write down the permutations of 1234. How many permutations of 1234 are there?

1234	1243	1423	4123	(4)
1324	1342	1432	4132	
3124	3142	3412	4312	
2134	2143	2413	4213	
2314	2341	2431	4231	
3214	3241	3421	4321	

There are 24 = 4! permutations.

7. Proof that there are n! permutions π_1, \ldots, π_n of $1, \ldots, n$.

Thee proof is by induction. Assume that

there are (n-1)! permutations for

 π_1,\ldots,π_{n-1}

as we have verified up to n-1 = 4. From each of these permuations we get n new permuations by starting with the number n on the right side and transposing it in (n-1) steps to the left side:

> $\pi_1, \ldots, \pi_{n-1}, n$ $\pi_1, \ldots, n, \pi_{n-1}$ \dots $\pi_1, n, \ldots, \pi_{n-1}$ $n, \pi_1, \ldots, \pi_{n-1}$

Hence there are

$$(n-1)!n = n!$$

permutaions of the numbers $1, \ldots, n$.

8. With

$$i_1 = 1, ..., n,$$

 $i_2 = 1, ..., n,$
 $...$
 $i_n = 1, ..., n$

the definition of the **Levi-Cevita tensor** is

 $\epsilon_{i_1,\ldots,i_n} = \begin{cases} +1 \text{ for } i_1,\ldots,i_n \text{ even permutation,} \\ -1 \text{ for } i_1,\ldots,i_n \text{ odd permutation,} \\ 0 \text{ for } i_1,\ldots,i_n \text{ no permutation.} \end{cases}$

(5)

A permutation i_1, \ldots, i_n is even, when it is generated by an even number of transpositions of $1, \ldots, n$ and odd, when it is generated by an odd number of transpositions of $1, \ldots, n$.

How many non-zero elements are there?

How many positive elements are there?

$$n!/2$$
 (7)

(6)

9. Write down all elements of the Levi-Cevita tensor for n = 2.

$$\epsilon_{11} = 0 \quad \epsilon_{12} = +1$$

 $\epsilon_{21} = -1 \quad \epsilon_{22} = 0$ (8)

10. Write down all elements of the Levi-Cevita tensor for n = 3.

1.	$\epsilon_{111} = 0$	(9)
2.	$\epsilon_{112} = 0$	
3.	$\epsilon_{113} = 0$	
4.	$\epsilon_{121} = 0$	
5.	$\epsilon_{122} = 0$	
6.	$\epsilon_{123} = +1$	
7.	$\epsilon_{131} = 0$	
8.	$\epsilon_{132} = -1$	
9.	$\epsilon_{133} = 0$	
10.	$\epsilon_{211} = 0$	
11.	$\epsilon_{212} = 0$	
12.	$\epsilon_{213} = -1$	
13.	$\epsilon_{221} = 0$	
14.	$\epsilon_{222} = 0$	

15.
$$\epsilon_{223} = 0$$

16. $\epsilon_{231} = +1$
17. $\epsilon_{232} = 0$
18. $\epsilon_{233} = 0$
19. $\epsilon_{311} = 0$
20. $\epsilon_{312} = +1$
21. $\epsilon_{313} = 0$
22. $\epsilon_{321} = -1$
23. $\epsilon_{322} = 0$
24. $\epsilon_{323} = 0$
25. $\epsilon_{331} = 0$
26. $\epsilon_{332} = 0$
27. $\epsilon_{333} = 0$

11. Write down all non-zero elements of the Levi-Cevita tensor for n = 4.

1.	$\epsilon_{1234} = +1$
2.	$\epsilon_{1243} = -1$
3.	$\epsilon_{1423} = +1$
4.	$\epsilon_{4123} = -1$

5.
$$\epsilon_{1324} = -1$$

6. $\epsilon_{1342} = +1$
7. $\epsilon_{1432} = -1$
8. $\epsilon_{4132} = +1$

- 9. $\epsilon_{3124} = +1$ 10. $\epsilon_{3142} = -1$ 11. $\epsilon_{3412} = +1$ 12. $\epsilon_{4312} = -1$
- 13. $\epsilon_{2134} = -1$ 14. $\epsilon_{2143} = +1$ 15. $\epsilon_{2413} = -1$ 16. $\epsilon_{4213} = +1$
- 17. $\epsilon_{2314} = +1$ 18. $\epsilon_{2341} = -1$ 19. $\epsilon_{2431} = +1$ 20. $\epsilon_{4213} = -1$

21.
$$\epsilon_{3214} = -1$$

22. $\epsilon_{3241} = +1$
23. $\epsilon_{3241} = -1$
24. $\epsilon_{4321} = +1$