Mathematical Physics - PHZ 3113

Classwork 13 (April 10, 2013) Solutions Linear Equations

After finding solutions: Check that they are correct!

1. Find all solutions of the equations

$$
\begin{align*}
& x+2 y=3 \tag{1}\\
& 3 x+y=2 \tag{2}
\end{align*}
$$

Solution:
$\left|\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right|=-5, \quad\left|\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right|=-1, \quad\left|\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right|=-7$
and by Cramer's rule

$$
x=\frac{1}{5}, \quad y=\frac{7}{5} .
$$

Check: Insert x and y into (1) and (2). Alternative way to the solution: Gauss elimination.
2. Find all solutions of the equations

$$
\begin{align*}
x+2 y & =3, \tag{3}\\
2 x+4 y & =6 . \tag{4}
\end{align*}
$$

Solution:

$$
\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|=0, \quad\left|\begin{array}{ll}
3 & 2 \\
6 & 4
\end{array}\right|=0, \quad\left|\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right|=0
$$

and the two equations are linearly dependent. Dividing (4) by 2 gives (3) again. Therefore the solution is

$$
y=\frac{3}{2}-\frac{x}{2}
$$

for general x.
3. Find all solutions of the equations

$$
\begin{align*}
x+2 y & =3 \tag{5}\\
2 x+4 y & =4 . \tag{6}
\end{align*}
$$

Solution:

$$
\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|=0, \quad\left|\begin{array}{ll}
3 & 2 \\
4 & 4
\end{array}\right|=4, \quad\left|\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right|=-2
$$

and there are no solutions. The equations contradict one another. Subtracting (5) from (6) gives

$$
\begin{equation*}
x+2 y=1 \tag{7}
\end{equation*}
$$

which disagrees with (5).
4. Find all solutions of the equations

$$
\begin{align*}
& x+2 y=0 \tag{8}\\
& 3 x+y=0 \tag{9}
\end{align*}
$$

Solution: As the determinant

$$
\left|\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right|=-5
$$

is non-zero there is only the trivial solution $x=y=0$.
5. Find all solutions of the equations

$$
\begin{array}{r}
x+2 y=0 \\
2 x+4 y=0 . \tag{11}
\end{array}
$$

Solution: From the deterninant

$$
\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|=0
$$

we read off

$$
\frac{x}{y}=\frac{4}{-2}=-2
$$

which, of course, follows also directly from either (10) or (11).
6. Find all solutions of the equations

$$
\begin{array}{r}
x+2 y+z=0 \\
2 x+4 y+z=0 \\
x+y+2 z=0 \tag{14}
\end{array}
$$

Solution: As the determinant

$$
\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 1 \\
1 & 1 & 2
\end{array}\right|=8+2+2-1-8-4=-1
$$

is non-zero there is only the trivial solution $x=y=z=0$.
7. Find all solutions of the equations

$$
\begin{array}{r}
x+2 y+z=0, \\
2 x+4 y+2 z=0, \tag{16}\\
x+y+2 z=0 .
\end{array}
$$

(17)

Solution: From the determinant

$$
\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 1 & 2
\end{array}\right|=8+4+2-2-8-4=0
$$

we read off

$$
\frac{x}{y}=-\frac{\left|\begin{array}{ll}
4 & 2 \\
1 & 2
\end{array}\right|}{\left|\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right|}=-\frac{6}{2}=-3
$$

$$
\frac{x}{z}=+\frac{\left|\begin{array}{ll}
4 & 2 \\
1 & 2
\end{array}\right|}{\left|\begin{array}{ll}
2 & 4 \\
1 & 1
\end{array}\right|}=-\frac{6}{-2}=-3
$$

$$
\frac{y}{z}=-\frac{\left|\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right|}{\left|\begin{array}{ll}
2 & 4 \\
1 & 1
\end{array}\right|}=-\frac{2}{-2}=+1
$$

(20)

Multiplying (18) with (20) we find consistency with (19). Choosing the normalization $y=1$ a solution is

$$
x=-3, \quad y=1, \quad z=1
$$

Inserting these numbers into equations (15), (16) and (17), we check that the solution is correct.

