Mathematical Physics - PHZ 3113

Homework 10 (April 10, 2013)
Pauli Matrices

1. Find three 2×2 matrices $\sigma_{i}, i=1,2,3$, which fulfill the relations

$$
\begin{align*}
\sigma_{i} \sigma_{j} & =i \epsilon_{i j k} \sigma_{k} \text { for } i \neq j, \\
\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i} & =2 \delta_{i j} 1_{2}, \tag{2}
\end{align*}
$$

where 1_{2} is the 2×2 unit matrix. Solution:
Simple matrices are found from the ansatz

$$
\sigma=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \quad \text { or } \quad \sigma=\left(\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right)
$$

From (2) $\left(\sigma_{i}\right)^{2}=1_{2}$ follows for $i=1,2,3$ and therefore

$$
a^{2}=b^{2}=1 \text { and } c d=1
$$

with solutions
$a= \pm 1, b= \pm 1, c=d= \pm 1, c=-d= \pm i$.
Due to (1) the unit matrix is excluded as a solution for σ_{i}. With the choice $c=1$,
$d=-1$ for σ_{1} and $c=-i, d=i$ for for σ_{2} we have

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{3}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

and find σ_{3} from (1):

$$
\begin{align*}
\sigma_{3} & =-i \sigma_{1} \sigma_{2}=-i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{4}
\end{align*}
$$

Relation (1) follows by explicit multiplication of the matrices and for $i \neq j$ relation
(2) is a consequence of the antisymmetry of
(1) in the indices i and j.
2. Find the transformation, which generates the general solution $\sigma_{i}^{\prime}, i=1,2,3$ from your previous special solution.

Solution: Let A be a 2×2 matrix with

$$
|A|=\operatorname{det}(A) \neq 0
$$

Then

$$
\begin{equation*}
\sigma_{i}^{\prime}=A^{-1} \sigma_{i} A \tag{5}
\end{equation*}
$$

is the general solution to Eq. (1) and (2).

