
Solution Paul Trap

In the quasi-static approximation the field is the electrostatic field with the given
boundary conditions at the time in question. Due to the cylindrical symmetry we
have Φ = Φ(ρ, z; t). To get the boundary conditions on the end electrodes right, we
set
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)
F (ρ, z, t) .

The boundary condition on the ring electrode implies ρ2/2 = z2 + d2/2 and on this
boundary
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Therefore, the function F depends only on t
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so that the potential becomes
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which is now easily seen to be the solution:
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The electric field is given by
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