Solution Paul Trap

In the quasi-static approximation the field is the electrostatic field with the given boundary conditions at the time in question. Due to the cylindrical symmetry we have $\Phi=\Phi(\rho, z ; t)$. To get the boundary conditions on the end electrodes right, we set

$$
\Phi=\left(z^{2}-\frac{1}{2} \rho^{2}-d^{2}\right) F(\rho, z, t)
$$

The boundary condition on the ring electrode implies $\rho^{2} / 2=z^{2}+d^{2} / 2$ and on this boundary

$$
\Phi=V_{0} \sin (\omega t)=-\frac{3}{2} d^{2} F(\rho, z, t)
$$

Therefore, the function F depends only on t

$$
F(t)=-\frac{2}{3} \frac{V_{0}}{d^{2}} \sin (\omega t)
$$

so that the potential becomes

$$
\Phi=-\frac{2}{3} \frac{V_{0}}{d^{2}}\left(z^{2}-\frac{1}{2} \rho^{2}-d^{2}\right) \sin (\omega t),
$$

which is now easily seen to be the solution:

$$
\nabla^{2} \Phi=-\frac{2}{3} \frac{V_{0}}{d^{2}} \sin (\omega t) \nabla^{2}\left(z^{2}-\frac{1}{2} \rho^{2}-d^{2}\right)=0
$$

The electric field is given by

$$
\vec{E}=-\nabla \cdot \Phi=-\left(\hat{\rho} \frac{\partial \Phi}{\partial \rho}+\hat{z} \frac{\partial \Phi}{\partial z}\right)=\frac{2}{3} \frac{V_{0}}{d^{2}}(2 z \hat{z}-\rho \hat{\rho}) \sin (\omega t)
$$

