
PHZ3113: Solution for Homework 11.

1. For small oscillation we have derived the Euler-Lagrange equations, which read
in matrix notation (
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This is solved by the exponential ansatz (physical is the real part of the solution):
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2. Let us take minors with respect to the first row of the determinant. For the
ω+ frequency the ratio of the two minors is
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Therefore, the solutions (real part) can be written

φ+(t) = A+ cos(ω+t) +B+ sin(ω+t) ,

φ−(t) = A− cos(ω−t) +B− sin(ω−t) ,

φ(t) = φ+(t) + φ−(t) ,

ψ(t) = −
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3. The four constants are determined by the four initial value, e.g., φ0, φ̇0, ψ0, ψ̇0

at time t = 0:
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