Mathematical Physics - PHZ 3113
Vectors 2 (Classwork January 9, 2013)

Group \#

Participating students (print):

1. Write down the commutative law of vector addition

$$
\begin{equation*}
\vec{a}+\vec{b}=\vec{b}+\vec{a} \tag{1}
\end{equation*}
$$

2. Write down the associative law of vector addition

$$
\begin{equation*}
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) \tag{2}
\end{equation*}
$$

3 . How is the positively chosen angle θ between two $n D$ vectors \vec{a}, \vec{b} defined?

$$
\begin{equation*}
\cos (\theta)=\hat{a} \cdot \hat{b}, \quad 0 \leq \theta \leq \pi \tag{3}
\end{equation*}
$$

4. Write down the velocity for a $n D$ position vector

$$
\vec{r}=\left(\begin{array}{c}
x_{1}(t) \tag{4}\\
\cdot \\
\cdot \\
\cdot \\
x_{n}(t)
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
\frac{d x_{1}}{d t} \\
\cdot \\
\cdot \\
\cdot \\
\frac{d x_{n}}{d t}
\end{array}\right)
$$

5. Draw (millimeter paper provided)

$$
\begin{equation*}
\vec{r}(t)=\vec{r}_{0}+\vec{v} t \tag{5}
\end{equation*}
$$

with (in arbitrary units)

$$
\vec{r}_{0}=\binom{2}{4}, \quad \vec{v}_{0}=\binom{4}{2}, \quad 0 \leq t \leq 2
$$

6. Calculate the work (in SI units $[J]$) for

$$
\begin{align*}
& \vec{F}=\binom{2}{1}[N], \quad \triangle \vec{r}=\binom{1}{3}[m] . \tag{7}\\
& W=(2+3)[N m]=5[J] . \tag{8}
\end{align*}
$$

7. Describe the the surface swept out by \vec{r} for

$$
\begin{align*}
& (\vec{r}-\vec{a}) \cdot \vec{a}=0, \tag{9}\\
& (\vec{r}-\vec{a}) \cdot \vec{r}=0, \tag{10}
\end{align*}
$$

where \vec{a} is a constant non-zero $n D$ vector (compare exercise 1.2.2 of the book).
The trick is to write \vec{r} as

$$
\vec{r}=r_{\perp} \hat{a}_{\perp}+r_{\|} \hat{a} \text { with } \hat{a}=\frac{\vec{a}}{a}
$$

where $a=|\vec{a}|>0$ and \hat{a}_{\perp} is any unit vector perpendicular to \vec{a}, i.e., $\hat{a}_{\perp} \cdot \hat{a}=0$. Calculation for (9):

$$
\begin{align*}
0 & =(\vec{r}-\vec{a}) \cdot \vec{a}=\left(r_{\|}-a\right) a \\
& \Rightarrow r_{\|}=a \tag{12}
\end{align*}
$$

and the solution is

$$
\begin{equation*}
\vec{r}=r_{\perp} \hat{a}_{\perp}+a \hat{a} \tag{13}
\end{equation*}
$$

with arbitrary values for r_{\perp}. The is the $(n-1) D$ plane perpendicular to \vec{a} and located at the tip of \vec{a}.

Calculation for (10):

$$
\begin{aligned}
0 & =(\vec{r}-\vec{a}) \cdot \vec{r}=r_{\perp}^{2}+\left(r_{\|}-a\right) r_{\|} \\
& \Rightarrow r_{\perp}^{2}=\left(a-r_{\|}\right) r_{\|}
\end{aligned}
$$

with the solution

$$
\begin{equation*}
r_{\perp}= \pm \sqrt{\left(a-r_{\|}\right) r_{\|}} \tag{14}
\end{equation*}
$$

for $0 \leq r_{\|} \leq a$. The part $+\sqrt{\left(a-r_{\|}\right) r_{\|}}$ is drawn below (the $-\sqrt{ }$ root is included by $\hat{a}_{\perp} \rightarrow-\hat{a}_{\perp}$).

