Mathematical Physics - PHZ 3113 Solutions Midterm 1 (February 18, 2013)

1. Calculate the gradient of the 3D potential (in arbitrary units) $\frac{1}{2} r^{2}$.
Solution (with Einstein convention):

$$
\begin{aligned}
\nabla \frac{1}{2} r^{2} & =r \nabla r=r \hat{x}_{i} \partial_{i} r=r \hat{x}_{i} \frac{x_{i}}{r} \\
& =r \frac{\vec{r}}{r}=r \hat{r}=\vec{r}
\end{aligned}
$$

2. A force in 3D is (in arbitrary units) given by $\vec{F}=-r \vec{r}$. Use (with Einstein convention)

$$
\nabla \times r \vec{r}=\epsilon_{i j k} \hat{x}_{i} \partial_{j} r x_{k}
$$

to calculate the curl of this force. Solution:

$$
\begin{aligned}
& \epsilon_{i j k} \hat{x}_{i} \partial_{j} r x_{k}= \\
& \epsilon_{i j k} \hat{x}_{i} x_{k} \partial_{j} r+\epsilon_{i j k} \hat{x}_{i} r \partial_{j} x_{k}=
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{i j k} \hat{x}_{i} x_{k} \frac{x_{j}}{r}+\epsilon_{i j k} \hat{x}_{i} r \delta_{j k}= \\
& \frac{1}{r} \epsilon_{i j k} \hat{x}_{i} x_{j} x_{k}+\epsilon_{i j j} \hat{x}_{i} r=0+0=0
\end{aligned}
$$

The first term is zero, because it is the contraction of an anti-symmetric with a symmetric tensor, the second because of $\epsilon_{i j j}=0$.
3. Calculate the curl of the force

$$
\vec{F}=x_{2} \hat{x}_{1}+x_{3} \hat{x}_{2}+x_{1} \hat{x}_{3}=\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right) .
$$

Solution:

$$
\begin{aligned}
\nabla \times \vec{F} & =\hat{x}_{1}\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right) \\
& +\hat{x}_{2}\left(\partial_{3} F_{1}-\partial_{1} F_{3}\right) \\
& +\hat{x}_{3}\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right) \\
& =\hat{x}_{1}(0-1)+\hat{x}_{2}(0-1)+\hat{x}_{3}(0-1) \\
& =-\hat{x}_{1}-\hat{x}_{2}-\hat{x}_{3}=-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

4. A point mass on an inclined plane experiences under gravity a force $\vec{F}=-F \hat{z}$ in downward direction (see the figure). Find the magnitudes of the forces perpendicular and parallel to the plane as function of the angle α. Solution:

$$
F_{\perp}=F \cos (\alpha), \quad F_{\|}=F \sin (\alpha)
$$

5. A point mass is suspended as shown in the figure. As in the previous problem it experiences a force $\vec{F}=-F \hat{z}$ in downward direction. Find the z components of the tensions \vec{T}^{1} and \vec{T}^{2} as functions of the angles α_{1} and α_{2}. In which limit becomes T_{x}^{1} infinite?
Solution: There are four equations for the four unknowns $T_{x}^{1}, T_{z}^{1}, T_{x}^{2}$ and T_{z}^{2} as functions of three free parameters F, α_{1}, α_{2} :

$$
\begin{align*}
T_{z}^{1}+T_{z}^{2} & =F, \\
T_{x}^{1}+T_{x}^{2} & =0, \\
\tan \alpha_{1} & =\frac{T_{z}^{1}}{T_{x}^{1}}, \tag{1}\\
\tan \alpha_{2} & =\frac{T_{z}^{2}}{-T_{x}^{2}}=\frac{T_{z}^{2}}{T_{x}^{1}} .
\end{align*}
$$

Now,

$$
\begin{gathered}
\frac{\tan \alpha_{1}}{\tan \alpha_{2}}=\frac{T_{z}^{1}}{T_{z}^{2}}, \quad T_{z}^{2}=\frac{\tan \alpha_{2}}{\tan \alpha_{1}} T_{z}^{1} \\
T_{z}^{1}\left(1+\frac{\tan \alpha_{2}}{\tan \alpha_{1}}\right)=F, \quad T_{z}^{1}=\frac{F \tan \alpha_{1}}{\tan \alpha_{1}+\tan \alpha_{2}} \\
T_{z}^{2}\left(1+\frac{\tan \alpha_{1}}{\tan \alpha_{2}}\right)=F, \quad T_{z}^{2}=\frac{F \tan \alpha_{2}}{\tan \alpha_{1}+\tan \alpha_{2}} .
\end{gathered}
$$

It follows from (1) that

$$
T_{x}^{1}=T_{z}^{1} \tan \alpha_{1}=\frac{F}{\tan \alpha_{1}+\tan \alpha_{2}}
$$

becomes infinite for $\alpha_{1} \rightarrow 0$ and $\alpha_{2} \rightarrow 0$.

Second solution:

$$
\begin{aligned}
T^{1} \sin \alpha_{1}+T^{2} \sin \alpha_{2} & =F \\
T^{1} \cos \alpha_{1}-T^{2} \cos \alpha_{2} & =0
\end{aligned}
$$

Solving for T^{1} :

$$
\begin{align*}
T^{2}= & T^{1} \frac{\cos \alpha_{1}}{\cos \alpha_{2}} \\
F= & T^{1}\left(\sin \alpha_{1}+\sin \alpha_{2} \frac{\cos \alpha_{1}}{\cos \alpha_{2}}\right) \\
T^{1}= & F \frac{\cos \alpha_{2}}{\sin \alpha_{1} \cos \alpha_{2}+\cos \alpha_{1} \sin \alpha_{2}} \\
& T^{1}=F \frac{\cos \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} \tag{2}
\end{align*}
$$

Solving for T^{2} :

$$
\begin{align*}
T^{1}= & T^{2} \frac{\cos \alpha_{2}}{\cos \alpha_{1}} \\
F= & T^{2}\left(\sin \alpha_{2}+\sin \alpha_{1} \frac{\cos \alpha_{2}}{\cos \alpha_{1}}\right) \\
T^{2}= & F \frac{\cos \alpha_{1}}{\sin \alpha_{2} \cos \alpha_{1}+\cos \alpha_{2} \sin \alpha_{1}} \\
& T^{2}=F \frac{\cos \alpha_{1}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} \tag{3}
\end{align*}
$$

The components follow from

$$
\begin{aligned}
& T_{x}^{1}=T^{1} \cos \alpha_{1}=-T_{x}^{2} \\
& T_{z}^{1}=T^{1} \sin \alpha_{1} \\
& T_{z}^{2}=T^{2} \sin \alpha_{2}
\end{aligned}
$$

