Mathematical Physics — PHZ 3113 Midterm 1 (February 18, 2013) - 1. Calculate the gradient of the 3D potential (in arbitrary units) $\frac{1}{2}r^2$. - 2. A force in 3D is (in arbitrary units) given by $\vec{F} = -r\vec{r}$. Use (with Einstein convention) $$\nabla \times r \, \vec{r} = \epsilon_{ijk} \, \hat{x}_i \, \partial_j \, r \, x_k$$ to calculate the curl of this force. 3. Calculate the curl of the force - 4. A point mass on an inclined plane experiences under gravity a force $\vec{F} = -F \hat{z}$ in downward direction (see the figure). Find the magnitude of the force perpendicular and parallel to the plane as function of the angle α . - 5. A point mass is suspended as shown in the figure. As in the previous problem it experiences a force $\vec{F} = -F \hat{z}$ in downward direction. Find the z components of the tensions \vec{T}^1 and \vec{T}^2 as functions of the angles α_1 and α_2 . In which limit becomes T_x^1 infinite? How many free parameters and how many equations are there? Write down the equations.