1. Use the definition $\nabla \times \vec{A}=\epsilon_{i j k} \hat{x}_{i} \partial_{j} A_{k}$ (with Einstein convention) and properties of the Levi-Civita tensor $\epsilon_{i j k}$ to transform

$$
\nabla \times \nabla \times \vec{A}
$$

into applications of the ∇ operator, which do no longer involve the curl.
2. Calculate the volume of an ellipsoid

$$
V=\int_{\left(\frac{x_{1}}{a}\right)^{2}+\left(\frac{x_{2}}{b}\right)^{2}+\left(\frac{x_{3}}{c}\right)^{2} \leq 1} d^{3} x
$$

Hint: With suitable substitutions the integral can be mapped on the integral for the volume of a sphere.
3. Calculate

$$
\vec{v}=\vec{\omega} \times \vec{r}
$$

and express the result in spherical coordinates. Here $\vec{\omega}=$ $\dot{\phi} \hat{z}$ is the angular velocity and $\vec{r}=r \hat{r}$ the position vector.
4. Calculate the time derivative

$$
\dot{\hat{r}}=\frac{d \hat{r}}{d t}
$$

of the unit vector

$$
\hat{r}=\frac{\vec{r}}{|\vec{r}|}
$$

and express the result in spherical coordinates.
5. The orbit of a planet is assumed to be an ellipse, which in cylindrical coordinates is given by the equation

$$
\rho=\frac{p}{1+\epsilon \cos \phi}
$$

where $0 \leq \epsilon<1$ is the eccentricity and p the latus rectum. From the analytical solution of Kepler's problem it follows that the magnitude of the angular momentum is (up to a correction for the finite sun mass) given by

$$
L=\operatorname{const} m \sqrt{p},
$$

where m is the mass of the planet. Use this information and angular momentum conservation to derive Kepler's 3rd law.

