1. Use the definition $\nabla \times \vec{A}=\epsilon_{i j k} \hat{x}_{i} \partial_{j} A_{k}$ (with Einstein convention) and properties of the Levi-Civita tensor $\epsilon_{i j k}$ to transform

$$
\nabla \times \nabla \times \vec{A}
$$

into applications of the ∇ operator, which do no longer involve the curl.

Solution:

$$
\begin{aligned}
& \nabla \times \nabla \times \vec{A}=\epsilon_{i j k} \hat{x}_{i} \partial_{j} \epsilon_{k l m} \partial_{l} A_{m} \\
= & \left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \hat{x}_{i} \partial_{j} \partial_{l} A_{m} \\
= & \hat{x}_{i} \partial_{j} \partial_{i} A_{j}-\hat{x}_{i} \partial_{j} \partial_{j} A_{i} \\
= & \left(\hat{x}_{i} \partial_{i}\right)\left(\partial_{j} A_{j}\right)-\left(\partial_{j} \partial_{j}\right)\left(\hat{x}_{i} A_{i}\right) \\
= & \nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A} .
\end{aligned}
$$

2. Calculate the volume of an ellipsoid

$$
V=\int_{\left(\frac{x_{1}}{a}\right)^{2}+\left(\frac{x_{2}}{b}\right)^{2}+\left(\frac{x_{3}}{c}\right)^{2} \leq 1} d^{3} x
$$

Hint: With suitable substitutions the integral can be mapped on the integral for the volume of a sphere.

Solution: Let $x_{1}=a x_{1}^{\prime}, x_{2}=b x_{2}^{\prime}$ and $x_{3}=c x_{3}^{\prime}$. With these substitution we find

$$
\begin{aligned}
V & =a b c \int_{x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2} \leq 1} d^{3} x^{\prime} \\
& =a b c \int_{0}^{1} r^{\prime 2} d r^{\prime} \int_{-1}^{+1} d \cos \theta^{\prime} \int_{0}^{2 \pi} d \phi^{\prime} \\
& =\frac{4 \pi}{3} a b c
\end{aligned}
$$

3. Calculate

$$
\vec{v}=\vec{\omega} \times \vec{r}
$$

and express the result in spherical coordinates. Here $\vec{\omega}=$ $\dot{\phi} \hat{z}$ is the angular velocity and $\vec{r}=r \hat{r}$ the position vector.

Solution:

$$
\vec{v}=\dot{\phi} r \sin (\theta) \hat{\phi}=\dot{\phi} \rho \hat{\phi} .
$$

4. Calculate the time derivative

$$
\dot{\hat{r}}=\frac{d \hat{r}}{d t}
$$

of the unit vector

$$
\hat{r}=\frac{\vec{r}}{|\vec{r}|}
$$

and express the result in spherical coordinates.

$$
\begin{aligned}
\hat{r} & =\sin (\theta) \cos (\phi) \hat{x}+\sin (\theta) \sin (\phi) \hat{y}+\cos (\theta) \hat{z} \\
\hat{\theta} & =\cos (\theta) \cos (\phi) \hat{x}+\cos (\theta) \sin (\phi) \hat{y}-\sin (\theta) \hat{z} \\
\hat{\phi} & =-\sin (\phi) \hat{x}+\cos (\phi) \hat{y}
\end{aligned}
$$

we get

$$
\begin{aligned}
\frac{\partial \hat{r}}{\partial r} & =0 \\
\frac{\partial \hat{r}}{\partial \theta} & =\cos (\theta) \cos (\phi) \hat{x}+\cos (\theta) \sin (\phi) \hat{y} \\
& -\sin (\theta) \hat{z}=\hat{\theta} \\
\frac{\partial \hat{r}}{\partial \phi} & =-\sin (\theta) \sin (\phi) \hat{x}+\sin (\theta) \cos (\phi) \hat{y} \\
& =\sin (\theta) \hat{\phi}
\end{aligned}
$$

Therefore,

$$
\dot{\hat{r}}=\frac{\partial \hat{r}}{\partial \theta} \dot{\theta}+\frac{\partial \hat{r}}{\partial \phi} \dot{\phi}=\dot{\theta} \hat{\theta}+\sin (\theta) \dot{\phi} \hat{\phi}
$$

5. The orbit of a planet is assumed to be an ellipse, which in cylindrical coordinates is given by the equation

$$
\rho=\frac{p}{1+\epsilon \cos \phi}
$$

where $0 \leq \epsilon<1$ is the eccentricity and p the latus rectum. From the analytical solution of Kepler's problem it follows that the magnitude of the angular momentum is (up to a correction for the finite sun mass) given by

$$
L=\operatorname{const} m \sqrt{p}
$$

where m is the mass of the planet. Use this information and angular momentum conservation to derive Kepler's 3rd law.

Solution: For $\phi=0$ we have (a major half-axis and ϵ eccentricity)

$$
a-\epsilon a=\frac{p}{1+\epsilon} \Rightarrow p=a\left(1-\epsilon^{2}\right)
$$

Angular momentum conservation implies

$$
\begin{aligned}
\frac{L}{m}=\rho^{2} \dot{\phi} & =\text { const } \sqrt{a\left(1-\epsilon^{2}\right)} \\
\int_{0}^{2 \pi} \rho^{2} d \phi & =\text { const } \sqrt{a\left(1-\epsilon^{2}\right)} \int_{0}^{T} d t
\end{aligned}
$$

where T is the orbital period. As

$$
d f=\frac{1}{2} \rho^{2} d \phi
$$

is the infinitesimal sectorial area of an ellipse, the integral on the left side is two times the area of an ellipse, $2 \pi a b$, where $b=a \sqrt{1-\epsilon^{2}}$ is the minor axis of the ellipse. Collecting the terms we have

$$
2 \pi a^{2}=\mathrm{const} \sqrt{a} T
$$

Squaring both sides, we arrive at Kepler's 3rd law:

$$
a^{3}=\operatorname{const}^{\prime} T^{2}
$$

where const' is a new constant.

